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Chapter 1

Motivation

Conventional cars are ubiquitous in society. Whether for freight trafficking or for
humans, cars have great flexibility with their ability to go wherever without requiring
tailored infrastructure such as railway tracks. They do, however, have one major weak
point — the human driver. For this reason, industry and academia have put forward
efforts to enhancing cars with Autonomous driving system (ADS) capabilities. By
empowering humans with autonomous vehicles, it is expected that traffic efficiency
will increase and road fatalities will fall.

Due to the critical safety situation of manoeuvring a car In a public
setting where other external actors are present, it is essential that Autonomous driving
systems are thoroughly tested before they are deployed so that they are confirmed to
be sufficiently safe and capable of handling the situations in which they may typically
end up. But due to the complicated nature of the typical ADS operating environment,
coming up with exhaustive system test solutions is near impossible. For this reason we
want a way of testing the system that is capable of pushing the Autonomous driving
system to its limits such that we can measure its performance and see if it is capable of
handling complex scenarios.

Having an existing repository of Autonomous driving system test cases,
such as DeepScenario we wish to improve them. Large Language Models (LLMs)
have demonstrated great capabilities of context learning and emergent abilities, which
begs the question of their applicability for ADS testing. There are various methods of
testing Autonomous driving systems. Can these existing test methods be improved by
applying LLM technology to them?
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Chapter 2

Background

2.1 Testing

First, we need to establish some basic testing concepts.

2.1.1 Pre- and post-conditions

When running test cases, the concept of Pre-conditions refers to certain properties that
obtain before running a given test case. E.g that the ADS ego vehicle is stationary.

In many ways mirroring pre-conditions, post-conditions refers to the properties that
obtain after having ran a test. E.g. that the ego vehicle will be moving after having
performed the test.

2.1.2 Test coverage

Test coverage refers to the what degree the entire system is being tested. The concept
can be used to describe both hardware and software test coverage [27, p. 187]. Malaiya
et al. posit that hardware-based test coverage is measured in terms of the number of
possible faults covered, whereas software-based test coverage is measured in terms of the
amount of structural or data-flow units that have been exercised [27, p. 187]. A test case
that exercised every single code line of the system would by definition have perfect test
coverage.

2.2 Autonomous driving systems (ADSs)

Autonomous driving systems (ADSs) are systems that enable automotive vehicles to
drive autonomously. Due to the typical operating scenarios of a car it is pivotal that the
Autonomous driving systems maintain a high safety standard. A common way to assert
safety is to use simulator based testing [25, p. 1].

2.2.1 Autonomous driving system testing

Testing is essential for assuring Autonomous driving system operative safety [16, p. 163].
Several methods for testing exist, testing various aspects of the Autonomous driving
system. An ADS typically exists of several modules, all working together and handling
different aspect of the Autonomous driving system.

Huang et al. outline several typical architectures for ADS testing, drawing on
traditional software testing traditions outlining how software testing can be used

5



Chapter 2. Background

alongside more specialized ADS testing techniques such as simulation testing and X-
in-the-loop testing [16, pp. 163–164].

2.2.2 Autonomous driving system driveability

Driveability is a high-level estimator of the overall driving condition of an ADS, derived
from several lower-level sources [15, p. 3140]. It can be used to refer to various aspects
of a scene. Guo, Kurup, and Shah discuss the concept further, using the scene definition
of Ulbrich et al. as outlined in Section 2.2.7 → p.8, they describe how driveability can refer
both to (1) road conditions, and (2) human driver performance. Guo, Kurup, and Shah
go on to give an overview of how driveability can be used to refer to a (3) driveability
map which divides a map into cells indicating where the ADS expects that it will be able
to go, and (4) object driveability, which refers to the classification of physical objects in
the environment that the ADS expects that it can run over without causing damage to
the ego vehicle [15, pp. 3135–3136].

The main method for the assessing driveability of a scene comes form assessing the
environment of the scene. Factors such as (1) weather, (2) traffic flow, (3) road condition,
(4) obstacles all play into this. The ADS infers information from observation [15, p. 3136].

They continue to give an overview of various driveability factors and their associated
difficulties, using a a split between explicit and implicit factors.

Explicit driveability factors will typically include factors such as Extreme
weather such as (1) fog, (2) heavy rain, (3) snow, all serving to impair road visibility
and causing increased difficulties for vision-based tasks such as road detection and object
tracking [15, pp. 3136–3137]. Illumination also poses various challenges for typical ADS
tasks as a typical ADS will be required to operate in a plethora of scenes with varying
degrees of illumination depending on factors such as time of day and location (e.g. if
the ADS is operation in a dimly lit tunnel) [15, p. 3137]. The authors highlight how low
illumination may serve as an advantage for the ADS as this allows for using the head
lights of other vehicles as a feature for detecting them, whereas it make pedestrian
detection significantly more challenging [15, p. 3137]. Road geometry is another
external factor, satisfying our natural intuition that intersections and roundabouts are
more difficult to drive through than straight highways [15, p. 3137].

Implicit driveability factors consist of behaviours and intent of other road
users interacting with the autonomous car [15, p. 3138]. This includes the actions
of other vehicles such as their (1) overtaking, (2) lane changing, (3) rear-ending,
(4) speeding, and (5) failure to obey traffic laws . Guo, Kurup, and Shah call these
factors vehicle behaviours [15, p. 3138]. Furthermore, pedestrian behaviours are
also taken into account, noting how pedestrians can sometimes (6) cross the road,
(7) be inattentive, or (8) fail to comply with the traffic law [15, p. 3138]. They go on to
describe the driver behaviour of other drivers pointing out how (9) distraction, and
(10) drowsiness can be factors that cause accidents even for ADS-enhanced vehicles due
to the other, manual, cars interfering with their operation [15, pp. 3138–3139]. Lastly
motorcyclist/bicyclist behaviours cause their own source of implicit driveability
factors: The models and methods developed for analysing the group’s behaviour are
far more limited than other groups of road users [15, p. 3139]. Guo, Kurup, and Shah
theorise that this comes down to the lack of available datasets that capture and label
the trajectories and behaviours of motorcyclists and bicyclists [15, p. 3139], causing
potential issues for any ADS that wishes to operate in a shared traffic environment with
this group.
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2.2. Autonomous driving systems (ADSs)

2.2.3 Autonomous driving system testing metrics

When evaluating ADS testing, several metrics can be used. What metric to use will
depend on what the relevant test is measuring.

Building on what we have learnt about driveability (Section 2.2.2 → p.6), we take after
Guo, Kurup, and Shah and review three metrics for quantifying driveability: (1) scene
driveability, (2) collision-based risk, and (3) behaviour-based risk.

Scene driveability refers to how easy a scene is for an ADS to navigate, and the
scene driveability score refers to how likely the Autonomous driving system is to fail at
traversing the scene [15, p. 3140]. It is typically found through and end-to-end approach.
Note how this is a metric for scenes, without taking into account the performance of any
specific ADS.

Collision-based risk comes in two kinds - (1) binary risk indicator, and
(2) probabilistic risk indicator. Guo, Kurup, and Shah posit that the prior, binary
metric, indicates whether a collision will happen in the near future in a binary ‘either-
or’ sense, whereas the latter yields a probability calculated based on current states,
event, choice of hypothesis, future states and damage [15, p. 3140].

Behaviour-based risk estimation also represents a binary classification problem
wherein nominal behaviours are learnt from data, and then dangerous behaviours are
detected on that. This requires a definition of ‘nominal behaviour’, which is typically
defined on on acceptable speeds, traffic roles, location semantics, weather conditions
and/or the level of fatigue of the driver [15, p. 3140]. Furthermore Guo, Kurup, and Shah
describe how this metric also allows more than one ADSs to be labelled as ‘conflicting’
or ‘not conflicting’ [15, p. 3140], representing a ruling on their compatibility. Finally,
they note how behaviour-based risk assessment typically focuses on driver behaviours,
not taking into account other actors in the scene such as pedestrians or cyclists.

2.2.4 The complexities of ADS testing

As we have seen, ADSs can perform several tasks, in several environments. As such,
there are several relevant factors for testing them. It is not feasible to test all potential
variations of all potential environments in the real world, meaning that the test coverage1

typically will be low.
Some of the factors that complicate ADS operations are (1) timing, (2) sequence of

events, and (3) parameter settings such as the different speeds of various vehicles and
other actors.

Park, Yang, and Lim posit that the concept of complexity exists everywhere, but there
is no agreement on one for driving situations [28, p. 1182]. Therefore they introduce
their own concept of Driving situation complexity (DSC), which serves to give a metric
of a the complexity of a given driving situation. Their DSC is defined as the output
of a mathematical formula taking into account the perplexity and standard deviation
of several control variables M representing the surrounding vehicle’s behaviour [28,
p. 1182]. Their formula also takes into account the ratio of V2X -capable vehicles [28,
p. 1182], i.e. the vehicles that are connected and capable of communicating [36, p. 1].

2.2.5 Autonomous driving system simulation

Due to the complexity involved in testing Autonomous driving systems (Sec-
tion 2.2.4 → p.7), simulators are typically used for this purpose [25]. While the same

1See Test coverage → p.5
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Chapter 2. Background

points about not being able to test all possible scenarios do remain true for simulator
based testing due to the sheer number of factors, using a simulator allows for far greater
testing at far lower cost due to the minimal overhead of (1) generating, (2) running, and
(3) evaluating the outcome of test cases.

Furthermore, simulators allow for greater flexibility in determining the test scenarios
due to not being confined by the physical world that is available to the scientist that
wishes to perform the testing. Using a simulator, a Europe-based scientist can test their
ADS for North American conditions, or vice-versa.

2.2.6 The ADS simulator jungle

Due to the appeal of running ADS simulation, several contenders exist on the market.
Carla is a widely used ADS simulator [11]. It is implemented using the game

engine UnrealEngine [12] and allows for running test cases under various scenarios and
collecting their results. Carla is fully open source and is under active development. It
has been applied in projects such as KITTI-Carla, which generated a KITTI dataset
using Carla [9].

LGSVL is a deprecated simulator from LG [30]. It was used in projects such
as DeepScenario [25]. It allowed for running various maps with various vehicles and
tracking their data. It was also capable of generating HD maps 2. DeepScenario is a
project similar to this, concerned with testing Autonomous driving systems. Further
details about it in are located in Related work → p.21.

AirSim is Microsoft’s offering [32]. It has, like LGSVL, been deprecated. It is also
built using UnrealEngine. Unlike the other simulators we have seen, this also focused
on autonomous vehicles outside of only cars, such as drones.

2.2.7 Concepts of ADS simulation

Ulbrich et al. draw up an outline for the terms scene, situation, and scenario, that are
all concepts widely used in ADS simulation testing.

scene is a term that is used in different manners in various articles [34, p. 982], but
Ulbrich et al. propose standardising the definition on a scene describing a snapshot of the
environment including the scenery and dynamic elements, as well as as all actors’ and
observers’ self-representations, and the relationships among those entities [34, p. 983].

situation is, like scene, employed in various fashions. Ulbrich et al. give a
background detailing its usage ranging from "the entirety of circumstances, which are
to be considered by a robot for its selection of an appropriate behaviour pattern in a
particular moment’3, in Wershofen and Graefe [38, p. 3] to Schmidt, Hofmann, and
Bouzouraa introducing a distinction between the true world in a formal sense, and that
being the ground truth upon which a situation is described [31, p. 892].

Ulbrich et al. propose to standardise on the definition of a situation being the entirety
of circumstances, which are to be considered for the selection of an appropriate behaviour
pattern at a particular point of time [34, p. 985].

scenario refers to ’the temporal development between several scenes in a sequence
of scenes’ [34, p. 986]. We note how the definition a a scenario utilises that of a scene.
Furthermore, Ulbrich et al. hold it to be the case that ’every scenario starts with an
initial scene. Actions & events as well as goals & values may be specified to characterize

2https://github.com/lgsvl/simulator?tab=readme-ov-file#introduction
3The translation from German is borrowed from Ulbrich et al., [34, p. 984]
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2.3. Large Language Models (LLMs)

this temporal development in a scenario’ [34, p. 986], clarifying the distinction between
a scenario and a scene.

Lastly they posit that a scenario spans a certain amount of time, whereas a scene
has no such temporal aspect to it.

When running a simulation, we refer to the autonomous vehicle that is being
simulated as the ego vehicle [14].

ADS scenario formats

OpenSCENARIO is a standard developed by the Association for Automation and
Measurement Systems (ASAM), which is dedicated to the description of dynamic
scenarios [6, p. 651]. Under this format, only the dynamic content of the scenario is
recorded in the file. The static content is kept in other formats such as OpenDRIVER
and OpenCRG [6, p. 652]. The simulator Carla (outlined in Section 2.2.6 → p.8) supports
this standard [6, p. 652].

Another widely popular scenario format is CommonRoad [23, p. 4941], first
proposed in 2017 [2]. There are tools such as those proposed by Lin, Ratzel, and Althoff
that allows for converting OpenSCENARIO scenarios to the CommonRoad format [23,
p. 4941].

2.3 Large Language Models (LLMs)

Large Language Models (LLMs) are transformer-based language models that typically
contain several hundred billion parameters and are trained on massive text data [40,
p. 4]. Base language models, as the name implies, model language. They are typically
statistical models and an example of Machine learning (ML).

2.3.1 Large Language Model (LLM) architecture

A Large Language Model is a neural network trained on big data [40, p. 3]. They expand
on the older statistical language models by training on more data. This gives rise to
emerging abilities such as in context learning [40, p. 3] (Emergent abilities → p.10). These
older statistical models are also neural networks, but they were impractical to train on
large amounts of data. It was not until the seminal paper Attention is all you
need [35] that a Google team headed by Vaswani et al. showed how neural networks
can be trained in parallel using their new attention mechanism. This allowed for using
amounts of data that was not technologically practical up until that point, opening the
door for later advancements such as ChatGPT [40, p. 9]

Jurafsky and Martin describe how LLMs rely on pretraining.

The importance of training data

As a consequence of LLMs being statistical models of a certain input data [40, p. 1], what
data the model is trained on is of great importance for the capabilities of the model [40,
p. 6]. Zhao et al. give an overview of various LLMs and what kinds of corpora4 they
have been trained on [40, pp. 11–14].

The training data will provide the model with its base understanding of the world,
and as such it will dictate (1) what it ‘knows’, and (2) how we should interact with

4A corpus (pl. corpora) refers to a document collection.
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Chapter 2. Background

it. E.g., if we want to solve problems related to software code, we should employ a
model that has been trained on software code related topics so that the probability of it
predicting correct tokens will be higher. If it has not seen any code during its training it
would not have any base ‘knowledge’ for solving our problem, and its output would be
bad. The LLM would however have no way of knowing if its output would be right or
wrong, and we could say that it would have hallucinated. See General challenges with
LLMs → p.12 for further information about hallucination.

2.3.2 Emergent abilities

Wei et al. outline how emergent abilities appear when scaling up language models [37,
p. 1]. They define emergent ability to refer to abilities that are not present in smaller
models, but present in the larger ones[37, p. 1], building on physicist Anderson stating
that Emergence is when quantitative changes in a system result in qualitative changes
in behaviour. [37, p. 2].

Furthermore, they discuss how few-shot prompting typically can achieve far superior
results for harvesting LLM emergent abilities, whereas one-shot prompting can perform
worse than randomized results [37, pp. 3–4].

They continue outlining several approaches for achieving augmented prompting
strategies, underlining how (1) multi-step reasoning (2) instruction following (3) program
execution, and (4) model calibration all serve as possible ways of increasing LLM
performance [37, p. 5].

2.3.3 Intelligence in LLMs

There are three theories on machine intelligence, each serving to explain how they ‘think’:
(1) stochastic parrot (2) Sapir-Whorf hypothesis, and (3) conceptual blending.

Stochastic parrot

Bender et al. outline how LLMs can fool humans as they are trained on ever larger
amounts of parameters and data, appearing to be in possession of an intelligence [4,
pp. 610–611].

This anticipates the phenomenon of hallucination (Section 2.3.5 → p.12).

Sapir-Whorf hypothesis

The Sapir-Whorf hypothesis posits that The structure of anyone’s native language
strongly influences or fully determines the world-view he will acquire as he learns the
language. [5, p. 128].

We note how this maps to our LLMs, indicating that they will only ever be able to
‘know’ the data on which they have come into contact with.

Or: Language defines the possible room for thought.

Conceptual blending

Conceptual blending is a theory on intelligence. It refers to the basic mental operation
that leads to new meaning or insight that occurs when one identifies a match between to
input mental spaces, to project selectively from those inputs into a new ‘blended’ mental
space [13, pp. 57–58].

10



2.3. Large Language Models (LLMs)

This phenomenon explains how we are able to imagine phenomena that logically
should not exist such as land yacht (Land yacht conceptual blend → p.11)

Figure 2.1: The conceptual blend of a land yacht5

We note how this is how LLMs operate when processing vectorized linguistic data.

2.3.4 Utilising LLMs - Prompt engineering

A typical way of interacting with LLMs is prompting [40, p. 44]. You prompt the model
to solve various tasks. As we saw in Emergent abilities → p.10, the level of performance you
are able to extract from your Large Language Model can depend a great deal on how you
interact with it. The process of manually creating a suitable prompt is called prompt
engineering [40, p. 44]. Zhao et al. outline three principal prompting approaches:

In-context learning (ICL) is a representative prompting method that formulates
the task description and/or demonstrations in natural language text [40, p. 44]. It is
based on tuning-free prompting and it, as the name implies, never tunes the parameters
of the LLM [24, p. 15]. One the one hand, this allows for efficiency, but on the other
hand, heavy engineering is typically required to achieve high accuracy, meaning you
must provide the LLM with several answered prompts [24, p. 16]. In layman’s terms,
ICL entails including examples of the process you want the model to perform when
prompting it.

Chain-of-Thought (CoT) prompting is proposed to enhance In-context learning
by involving a series of intermediate reasoning steps in prompts [40, pp. 44, 52]. The

5Diagram borrowed from Fauconnier and Turner, [13, p. 67].
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Chapter 2. Background

basic concept of CoT prompting, is including an actual Chain-of-Thought inside the
prompt that shows the way form the input to the output [40, p. 52]. Zhao et al. note
that the same effect can be achieved by including simple instructions like ‘Let’s think
step by step’ and other similar ‘magic prompts’ in the prompt to the LLM, making CoT
prompting easy to use [40, p. 52].

Planning is proposed for solving complex tasks, which first breaks them down into
smaller sub-tasks and then generates a plan of action to solve the sub-tasks one by
one [40, pp. 44, 54]. The plans are being generated by the LLM itself upon prompting
it, and there is a distinction between text-based and code-based approaches. Text-based
approaches utilise natural language, whereas code-based approaches utilise executable
computer code [40, pp. 54–55].

2.3.5 General challenges with LLMs

We have seen that LLMs demonstrate promising abilities (Emergent abilities → p.10) But
they have nevertheless certain issues attached to them that we need to be aware of.

Hallucination

As we saw in Section 2.3.3 → p.10, LLMs are prone to bullshitting. They have no intuition
of, or concern with the truth. They only ever yield whatever response is the most probable
under their beam search algorithm being applied on their training data.

Environmental concerns

A University of Rhode Island study on the environmental impact of LLMs have shown
that they require wast amount of energy and water [17]. They also found that the
different LLMs may differ greatly in their energy consumption, highlighting that that
certain LLMs may consume more than 70 times more energy than others [17].

Another study by Tomlinson et al. focusing specifically on carbon emissions did
however find that these emissions significantly lower for LLMs than humans for specific
tasks such as text and image generation, ranging from 130 to 2900 times less Co2 emitted
depending on the task [33, p. 1].

Li et al. surveyed the water consumption of LLMs, finding that training the LLM
GPT-3 could evaporate as much as 700 000 litres of clean freshwater [22, p. 1].
Furthermore they review the trends of current AI adoption and project that the water
consumption of AI could reach levels as high as 4.2 - 6.6 billion cubic metres by 2027,
which is comparable to 4 - 6 Denmarks, or half of the United Kingdom [22, p. 1]. Recent
research indicates that serving LLMs currently account for more emissions than training
them [10, p. 37].

Efforts to achieve greener LLMs have been proposed by Li et al., while recognizing
the trade-off between ecological sustainability and high-quality outputs [21, p. 21799].

2.3.6 The different kinds of LLMs

There are several available LLMs, some of which are open source, and some proprietary.
Open source LLMs afford greater insight into their composition and underlying training
data, whereas proprietary models appear more like black boxes. Some popular model
families include the GPTs, Gemini, Llama, Claude, Mistral, and DeepSeek.

The LLMs differ primarily in their (1) parameters, and (2) training data. As we
saw in Section 2.3.1 → p.9, all typical LLMs utilise a transformer-based neural network.

12



2.3. Large Language Models (LLMs)

But due to their various different properties, different models can behave differently for
different tasks regardless of their similar architecture.

What they all share is their ability to perform inference, meaning that they predict
output tokens given some input tokens (see Section 2.3.3 → p.10).

2.3.7 Existing LLM applications for ADSs

Cui et al. give a broad overview of some of the ways LLMs have been applied for ADSs,
highlighting some of the opportunities and potential weaknesses of LLM applications
for ADS purposes. One of the ways LLMs can be applied, is for adjusting the driving
mode, or aiding in the decision-making process [8, p. 1]. Cui et al. delve further into these
aspects in their other work “Drive As You Speak: Enabling Human-Like Interaction With
Large Language Models in Autonomous Vehicles”, providing a framework for integrating
Large Language Model’s (1) natural language capabilities, (2) contextual understanding,
(3) specialized tool usage, (4) synergizing reasoning, and (5) acting with various modules
of the ADSs [7, p. 1].
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Chapter 4

Literature review

TODO: Write literature review
Can move some things from related work such as LLM4AD?
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The project
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Chapter 5

Related work

5.1 DeepScenario

DeepScenario is both a dataset and a toolset aimed at Autonomous driving system
testing [25]. The principal value proposition of this work lies in recognizing the fact
that (1) there are an infinite number of possible driving scenarios, and (2) generating
critical driving scenarios is very costly with regard to time costs and computational
resources [25, p. 52]. The authors therefore propose an open driving scenario of more
than 30 000 driving scenarios focusing on ADS testing [25, p. 52]. The project utilises
traditional machine learning methodologies, having been performed prior to the broad
adaptation of LLMs.

Its scenarios are intended for the simulator SVL by LG (Section 2.2.6 → p.8).

5.2 RTCM

RTCM is a ADS testing framework that allows the user to utilise natural language for
synthesizing test cases. The authors propose a domain-specific language — called RTCM,
after Restricted Test Case Modelling — for specifying test cases. It is based on
natural language and composed of (1) an easy-to-use template, (2) a set of restriction
rules, and (3) keywords [39, p. 397]. Furthermore, they also propose a tool to take
this RTCM source code as input and generating either (1) manual, or (2) automatically
executable test cases [39, p. 397]. The proposed tools were evaluated in experiments
with industry partners, successfully generating executable test cases [39, p. 397].

5.3 DeepCollision

Lu et al. utilise Reinforcement learning (RL) for ADS testing, with the goal of getting the
ADS to collide. They used collision probability for the loss function of the Reinforcement
learning algorithm [26, p. 384]. Their experiments included training 4 DeepCollision
models, then using (1) random, and (2) greedy models for generating a baseline to
compare their models with. The results showed that DeepCollision demonstrated
significantly better effectiveness in obtaining collisions than the baselines. While not
specifically focused on testing, we recognize that their work is thematically similar to
our envisioned project.
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Chapter 5. Related work

5.4 AutoSceneGen

AutoSceneGen is a framework for ADS testing using LLMs, focusing on the motion
planning of Autonomous driving systems [1, p. 14539]. Aiersilan highlights how LLMs
provide opportunities for efficiently evaluating ADSs in a cost-effective manner [1,
pp. 14539–14540]. They generate a substantial set of synthetic scenarios and experiment
with using (1) only synthetic data, (2) only real-world data, and (3) a combination of
the 2 as training data. They find that motion planners trained with their synthetic data
significantly outperforms those trained solely on real-world data [1, p. 14539].

5.5 LLM4AD

LLM4AD is a paper that gives a broad overview of LLMs for Autonomous driving
systems. It touches on several of the various ADS applications where LLMs are relevant
such as (1) language interaction, (2) contextual understanding, (3) zero-shot and few shot
planning allowing LLMs to perform tasks they weren’t trained on, helping with handling
edge cases (4) continuous learning and personalization, and finally (5) interpretability
and trust [8, p. 2]. Furthermore, the authors also propose a comprehensive benchmark
for evaluating the instruction-following abilities of an LLM based system in ADS
simulation [8, p. 1].

5.6 LLM-Driven testing of ADS

Petrovic et al. worked on using LLMs to for automated test generation based on free-form
textual descriptions in the area of automotive [29, p. 173]. They propose a prototype
for this purpose and evaluate their proposal for ADS driving feature scenarios in Carla.
They used the LLMs GPT-4 and Llama3, finding GPT-4 to outperform Llama3 for the
stated purpose. Their findings include this LLM-powered test methodology to be more
than 10 times faster than traditional methodologies while reducing cognitive load [29,
p. 173].

5.7 Requirements All You Need?

Lebioda et al. provide an overview of LLMs for ADSs in their recent preprint Are
requirements really all you need? A case study of LLM-driven configuration code
generation for automotive simulations1, focusing on LLM’s abilities for translating
abstract requirements extracted from automotive standards and documents into
configuration for Carla (Section 2.2.6 → p.8) simulations [20]. Their experiments include
employing the autonomous emergency braking system and the sensors of the ADS.
Furthermore, they split the requirements into 3 categories: (1) vehicle descriptions,
(2) test case pre-conditions, and (3) test case post-conditions (Pre- and post-
conditions → p.5) [20]. The preconditions they used included (1) agent placement,
(2) desired agent behaviour, and (3) weather conditions amongst others, whereas their
postconditions reflected the desired outcomes of the tests, primarily related to the
vehicle’s telemetry [20].

1This was submitted to Arxiv on 2025-05-19.
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Proposed solution

We have seen that ADS testing is complex and that it is difficult to get a good test
coverage (Section 2.2.4 → p.7). Furthermore, we have seen that LLMs have emergent
abilities (Section 2.3.2 → p.10). We therefore propose a tool for (1) running a base ADS
test case, (2) enhancing the test case using LLMs, (3) running the enhanced test case,
and (4) comparing the results of the two runs.

This will allow us to learn the extent to which LLMs can be applied for enhancing
Autonomous driving system test cases. We will survey several LLMs and evaluate their
applicability for the problem at hand, in light of what we know about LLMs (The
different kinds of LLMs → p.12). We want to have a pipeline that is able to process several
test cases in succession, in order to get a substantial dataset.

Let the pipeline tool be known as Hefe. The tool follows a natural pipeline structure.
We have some base test cases that need to be ran in order to get a baseline for the results,
we then have to improve these, and run the improved versions and compare them to their
original versions. The architecture of the tool is visualised in Figure 6.1 → p.24.

We need to define what requirement we will use for determining the result of a test
case run. Without this, we cannot compare it to other test cases.

Furthermore, as outlined in Cui et al., Large Language Models can be applied to
several aspects of Autonomous driving systems. It is not feasible that we focus on all
these aspects, and as such we should narrow down our scope. Let us review some of the
relevant aspects.

The applicability of LLMs in ADS testing

Autonomous driving systems are typically modular, as we have seen in Section 2.2.4 → p.7.
LLMs are applicable to the different modules in different ways as we saw in Related
work → p.21.
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LLM-powered test case
enhancer

LLM-agnostic
translation

Existing ADS
simulator test cases

Prompts

Test case runnerTest cases

LLM APIs

ADS simulator

Test case syntax
verification Result analytics

ADS
simulator

syntax
rules

Figure 6.1: Hefe pipeline architecture

User history of using Hefe

I have a set of Autonomous driving system (ADS) test cases. I provide this set to
Hefe. It will run the entire set, and generate a baseline of my ADS performance.
Hefe will then improve my test cases using Large Language Models and run them
again.
Lastly Hefe will report how the results differ from running the base and enhanced
version of a test case.
This will give me insight into what caused my ADS to fail so that I can look
into the cause of the error state and uncover underlying faults in the Autonomous
driving system.

6.1 Implementation language

The programming language Python is widely used for Autonomous driving system
(ADS) simulation. It is a high level language, allowing the user great flexibility and
developer experience. For this reason, I will implement Hefe using Python.

Python can be optimized using Just-In-Time (JIT) compilers such as Numba [19],
which can speed up our execution times. Libraries such as Joblib provide Python with
plug-and-play meomization, which will allow us to re-use values that have already been
computed, saving time and energy.

24



6.2. Overview of the components of the HEFE pipeline

6.1.1 The room for concurrency

When evaluating ADS test cases, the test cases are independent of each other. This
means that our problem is embarrassingly parallelizable 1 and we can trivially process
several test cases in parallel. Due to practical limitations in Carla, running the test cases
should however probably be done sequentially. But (1) prompting, (2) enhancing, and
(3) validating, can all be done concurrently. While Python lacks support of traditional
threads, it has some support for multiprocessing 2.

6.2 Overview of the components of the HEFE pipeline

The pipeline architecture is visualised in Hefe pipeline architecture → p.24. Here we
present the major components and their responsibilities

6.2.1 Test case enhancement

Test case repositories

We have seen in Related work → p.21 that there are existing repositories of ADS test cases.
These will provide us with (1) a baseline, and (2) data onto which we can apply our
LLM enhancements.

LLM enhancement

The base test cases will individually be enhanced by prompting the LLM. We will
experiment with several LLMs.

For performing the actual improvement, it is essential that we (1) test several LLM,
(2) give clear prompts and (3) verify that the returned test case adheres to the strictly
necessary syntax rules. This last point is important due to our knowledge of LLMs
hallucinating (see General challenges with LLMs → p.12).

In order to facilitate testing various Large Language Models, we should employ
LLM agnostic software as a translation layer. This will allow us to write code for a
common interface and test several LLMs that may all have different internal Application
programming interfaces (APIs) without having to modify our test code for specific APIs.
This (1) saves time and (2) makes for more even test conditions . Some pieces of software
providing this type of functionality include aisuite3, RamaLama from RedHat4, and
the MIT licensed Ollama5, both supporting a plethora of Large Language Models.

guidance6 is a framework for limiting the room in which LLMs may operate, which
might be useful if we run into issues with excessive hallucination.

Enhanced test case validation

We must expect the LLM to hallucinate to some extent (Section 2.3.5 → p.12). We therefore
propose to verify the format of the enhanced file before running it.

1https://en.wikipedia.org/wiki/Embarrassingly_parallel
2https://docs.python.org/3/library/multiprocessing.html
3https://github.com/andrewyng/aisuite
4https://github.com/containers/ramalama
5https://github.com/ollama/ollama
6https://github.com/guidance-ai/guidance
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Chapter 6. Proposed solution

As we saw in the section for ADS scenario formats → p.9, there exists several formats
for ADS scenarios. In order to verify that the syntax of our enhanced test case is valid,
we simply need to apply the syntax rules of our format.

The CommonRoad format is XML-based [2, p. 720] and as such we can to some
extent assess the degree of hallucination by parsing the XML structure. Furthermore, it
has an exhaustive Python library with several utilities7.

OpenSCENARIO exists both as XML and a domain-specific language (DSL). If we
utilise the XML version, we can apply the same methodology as for the CommonRoad
format. If using the DSL version, one way the OpenSCENARIO format can be verified
is by using free online cloud services such as this offering from AVL 8. We should
however strive for running a local verification service to (1) save time and compute,
and (2) preserve data privacy. Besides, it is generally a good idea to limit the number
of external dependencies9.

6.2.2 Test case running and evaluation

Test case runner

The system will automatically run all our base test cases using an ADS simulator, and
collect data points to get a baseline. It will later also run the mutated LLM-enhanced
versions of the base cases.

We have already ran the test cases in their base form. We will now run their
improved versions in order to compare them to see what effect the LLM enhancement
(see Section 6.2.1 → p.25) has had.

For the reasons we have seen in Section 2.2.6 → p.8, we want to run our test cases on
Carla. It is the best offering as it is open source, under active development and has a
feature rich Python API.

Test case improvement evaluation

We saw in Section 2.2.3 → p.7 that there are several metrics for assessing ADSs. We will
use these metrics when evaluating our improvements.

Test case result reporting

We will compare the results from running the baseline unmodified test case and
comparing it with the results from running the LLM-enhanced version and returning
to the user. Ideally with some automatic analysis of the results.

Having ran both the base test case and its enhanced counterpart, we have results.
The results will be stored in Comma separated values (CSV) files, allowing (1) further
analysis in Python/Jupyter, and (2) easy translation to LATEXtables for the final report.

This is the final step of the envisioned pipeline. Where we have our result, and need
to analyse them.

This last step has great opportunities for being scoped up to a fully integrated test
suite which allows for both running test cases and analysing the results in a Graphical
user interface (GUI). But we should focus on the prior steps for now, only creating a

7https://pypi.org/user/commonroad/
8https://smc.app.avl.com/validation
9Note for example how LGSVL[30] was shut down, preventing projects such as DeepScenario of Lu,

Yue, and Ali to be further developed on the original platform.
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6.2. Overview of the components of the HEFE pipeline

GUI if there is sufficient time towards the end of the project to focus on such non-LLM
related topics.

Initially, the results will consist of numerical comparison of the CSVs with regard to
the relevant metrics outlined in Test case improvement evaluation → p.26.

27



Chapter 6. Proposed solution

28



Chapter 7

Implementation architecture
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Chapter 8

Implementation details 1 - Thor

Rest API - running test cases - Thor “Fast API”, Python POST a test case to the API.
It will be ran on the ‘server’ RabbitMQ for listening for finished test cases? So that the
client knows it can fetch the results? Will need UUID for test cases so the correct result
can be fetched after it has been ran Need to store these somewhere. NoSQL database?
This component should also accumulate results. Huge TODO: What metric are these
results? Should be containerised (Docker/Podman)
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Chapter 9

Implementation details 2 - Odin

Rest API - performing LLM enhancement - Odin “Fast API”, Python Take a base test
case as body Have some prompt repository Apply prompts with LLMs Must integrate
with LLM. Either locally (Ollama) or remote (some API) Look into good LLM agnostic
transition layer. E.g. Aisuite https://github.com/andrewyng/aisuite Should use same
UUIDs as outlined above, but suffixed with e.g. “pure” and “tainted” Containerized.
Docker compose?
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Chapter 10

Implementation details 3 - Loki

Client - orchestrating the process - Loki Fetch available test cases from Thor? Select
what/which are to be used Store results clientside? Separate database for this?
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Conclusion
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Chapter 11

Experiment methodology

39



Chapter 11. Experiment methodology

40



Chapter 12

Results
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Chapter 13

Discussion

13.1 Environmental concerns

Cost/benefit with using LLMs. Refer back to General challenges with LLMs → p.12.

43



Chapter 13. Discussion

44



Chapter 14

Further work

14.1 Other LLMs

14.2 Different promtping strategies

14.3 GUI visualisations

Maybe: Frontend client - web GUI - Ivar If Loki does its job effectively, we can create
a web based frontend for doing the process. It could do the same as Loki, but with
greater ease of use. Having a GUI allows for making neat visualisations. Motivate why
our enhanced test cases are better by showing it.
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