Can large language models
make our roads safer?

Utilising large language models to decrease driveability in autonomous
driving system simulator scenarios

Oliver Ruste Jahren

Informatics: Programming and Systems architecture
60 ECTS study points

Department of Informatics
Faculty of Mathematics and Natural Sciences

Fall 2025

Draft of October 1, 2025 (commit: 74c5780)

Draft of October 1, 2025 (commit: 74c5780)

Oliver Ruste Jahren

Can large language models make
our roads safer?

Utilising large language models to decrease
driveability in autonomous driving system simulator
scenarios

Supervisors:
Shaukat Ali
Karoline Nyleender

Simula Research Laboratory

Draft of October 1, 2025 (commit: 74c5780)

Draft of October 1, 2025 (commit: 74¢5780)

Abstract

Autonomous driving systems (ADSs) rely on extensive testing in order
to verify their operational safety. But due to their nature of being able
to operate in any unseen environment with arbitrary external actors, the
number of potential scenarios is infinite. It is therefore important to
obtain the least driveable scenarios for simulator testing ahead of real
world deployment. We therefore propose applying Large Language Models
to Autonomous driving system scenario files to decrease their driveability,
exposing potential underlying issues in the ADS being tested in advance of
it happening during real world operation, avoiding causing severe damage to
its operator and/or other external actors.

Sammendrag

For & kunne fa selvkjgrende biler ut pa veiene, ma vi veere sikre pa at de er
trygge. Trygge bade for seg selv, sjafgren, og andre traffikanter. Men det
ligger i en bils natur at den skal kunne brukes overalt, med alle mulige folk
inne i bildet. Derfor er det teoretisk umulig & forutse alle mulige situasjoner
og teste disse i forkant. P& bakgrunn av dette fremmer vi i dette arbeidet
en metode for a ta ibruk KI til & gjgre dagens testscenarioer mer utrygge
enn hva de allerede er. A teste med disse forespeiles & ville kunne avdekke
potensielle underliggende feil i bilens systemer, slik at de kan rettes for den
volder skade ute i verden.

Draft of October 1, 2025 (commit: 74¢5780)

Contents

I Introduction 1

1 Motivation . 2

2 Background 3

2.1 Testing. e 3

2.1.1 Pre- and post-conditions . 3

2.1.2 Test coverage. .o 3

2.2 Autonomous driving systems (ADSs) . 3

2.2.1 Autonomous driving system testing. 3

2.2.2 Autonomous driving system driveability . 4

2.2.3 Autonomous driving system testing metrics. 5

2.2.4 The complexities of ADS testing . 5

2.2.5 Autonomous driving system simulation 5

2.2.6 The ADS simulator jungle 6

2.2.7 Concepts of ADS simulation 6

2.3 Large Language Models (LLMs) 7

2.3.1 Large Language Model (LLM) architecture . 7

2.3.2 Emergent abilities . 8

2.3.3 Intelligence in LLMs .. 8

2.3.4 Utilising LLMs - Prompt engineering 9

2.3.5 General challenges with LLMs 10

2.3.6 The different kinds of LLMs. 10

2.3.7 Existing LLM applications for ADSs. 11

3 Problem description 12

3.1 Cost Ce e 12

3.2 Impossible to test all scenarios 12

3.3 Edge cases. 12

4 Literature review. e e e e 13
41 Graz University of Technology survey on LLM applications for Au-

tonomous driving systems L L. 13

4.1.1 Meta survey review. 13

4.1.2 The categories of ways of applylng LLMs for ADS testlng .. 13

4.1.3 The 5 key challenges when applying LLMs for ADS testing . . 14

!
5

i
9

10

Draft of October 1, 2025 (commit: 74¢5780)

The project

Related work .

5.1 DeepScenario .

52 RTCM.

5.3 DeepCollision .

5.4 AutoSceneGen

5.5 LLM4AD . Coe

5.6 LLM-Driven testing of ADS .

5.7 Requirements All You Need?
5.8 Language Conditioned Traffic Generation
5.9 Scenario engineer GPT .

5.10 LLM driven scenario generation .

5.11 Chat2Scenario

Proposed solution .

6.1 Implementation language.

6.1.1 The room for concurrency .

6.2 Overview of the components of the HEFE pipeline

6.2.1 Test case enhancement .

6.2.2 Test case running and evaluation
Implementation details Ce e
7.1 Carla interface and scenario utilities — Thor .
7.2 LLM interface and prompt applications — Odin .

7.2.1 LLM interface implementations

7.2.2 Prompts and their associated code .
7.3 Execution tool / user oriented frontend — Loki .
Experiment methodology
8.1 Prompts

8.2 Trying different LLMs
8.3 Metrics

Conclusion

Results . .

9.1 Output of the LLM Coe
9.1.1 Hallucinations in the enhanced scenarios
9.1.2 Carla crashes with certain scenarios .

9.2 Metrics used for evaluation .

Discussion .

10.1 Environmental concerns .

10.2 Realism in the enhanced scenario .

10.3 LLM context size . Co

10.4 Python/ OpenScenario / DSI .

Contents

15
16
16
16
16
17
17
17
17
18
18
18
19
20
21
21
21
21
22
24
24
25
25
27
30
33
33
33
34

35
36
36
37
38
38
39
39
39
39
39

Draft of October 1, 2025 (commit: 74¢5780)

Contents
11 Further work . e
111 LLMaspects

12

Appendix

A

11.1.1 Different promtping strategies .

11.1.2 Temperature

11.1.3 Pretraining?

11.1.4 Retrieval-augmented gen
11.1.5 More models .
11.1.6 Tool calling .

11.2 GUI visualisations .o
11.3 Instant validation of test case syntax
11.4 Other datasets.
Conclusion.

Scenario file diffs

A1

Cut_in-enhanced-5.py

eration (RAG) .

40
40
40
40
40
40
40
40
40
40
41
42

47
48
48

Draft of October 1, 2025 (commit: 74¢5780)

List of Figures

2.1

6.1

Land yacht conceptual blend. o oo oL L.

HEFE pipeline architecture

Draft of October 1, 2025 (commit: 74¢5780)

Listings

vi

7.1

7.2

7.3

7.4

7.5

7.6

8.1

9.1

9.2

Al

Exerpt from carla_ interface.py, demonstrating the implementation of a
Carla health check.
llm_ api_interfaces/gemini_ interface.py, The implementation of a Gem-
ini interface for executing prompts.
llm_ api_ interfaces/ollama.py, The implementation of an Ollama inter-
face for executing prompts.o
scenario_ utils.py, The implementation of an various scenaro helper
functions for executing prompts.
experiments/testbed /prompts.py, The implementation of a prompt
testbed for executing prompts.
loki/main.py, The implementation of the Loki script.
The first prompt.
LLM-generated Python code with Markdown syntax. The bracketed part
on line 3 has been added for demonstration purposes, removing the actual
code for brevity.
Head of an LLM-enhanced scenario, highlighting how the LLM can add
an explenation of how it enhanced the scenario.
The diff of an LLM-enhanced Cut__in scenario, highlighting how the LLM
enhanced the scenario. L.

24

25

26

27

29

30

33

36

37

48

Draft of October 1, 2025 (commit: 74¢5780)

Preface

Here comes your preface, including acknowledgments and thanks.

Vi

Draft of October 1, 2025 (commit: 74¢5780)

Preface

viii

Draft of October 1, 2025 (commit: 74¢5780)

Part |

Introduction

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 1

Motivation

Conventional cars are ubiquitous in society. Whether for freight trafficking or for
humans, cars have great flexibility with their ability to go wherever without requiring
tailored infrastructure such as railway tracks. They do, however, have one major weak
point — the human driver. For this reason, industry and academia have put forward
efforts to enhancing cars with Autonomous driving system (ADS) capabilities. By
empowering humans with autonomous vehicles, it is expected that traffic efficiency
will increase and road fatalities will fall.

Due to the critical safety situation of manoeuvring a car In a public
setting where other external actors are present, it is essential that Autonomous driving
systems are thoroughly tested before they are deployed so that they are confirmed to
be sufficiently safe and capable of handling the situations in which they may typically
end up. But due to the complicated nature of the typical ADS operating environment,
coming up with exhaustive system test solutions is near impossible. For this reason we
want a way of testing the system that is capable of pushing the Autonomous driving
system to its limits such that we can measure its performance and see if it is capable of
handling complex scenarios.

Having an existing repository of Autonomous driving system test cases,
such as DeepScenario we wish to improve them. Large Language Models (LLMs)
have demonstrated great capabilities of context learning and emergent abilities, which
begs the question of their applicability for ADS testing. There are various methods of
testing Autonomous driving system. Can these existing test methods be improved by
applying LLM technology to them?

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 2

Background

2.1 Testing

First, we need to establish some basic testing concepts.

2.1.1 Pre- and post-conditions

When running test cases, the concept of Pre-conditions refers to certain properties that
obtain before running a given test case. E.g that the ADS ego vehicle is stationary.

In many ways mirroring pre-conditions, post-conditions refers to the properties that
obtain after having ran a test. E.g. that the ego vehicle will be moving after having
performed the test.

2.1.2 Test coverage

Test coverage refers to the what degree the entire system is being tested. The concept
can be used to describe both hardware and software test coverage [29, p. 187]. Malaiya
et al. posit that hardware-based test coverage is measured in terms of the number of
possible faults covered, whereas software-based test coverage is measured in terms of the
amount of structural or data-flow units that have been exercised [29, p. 187]. A test case
that exercised every single code line of the system would by definition have perfect test
coverage.

2.2 Autonomous driving systems (ADSs)

Autonomous driving system (ADS) are systems that enable automotive vehicles to drive
autonomously. Due to the typical operating scenarios of a car it is pivotal that the
Autonomous driving system maintain a high safety standard. A common way to assert
safety is to use simulator based testing [27, p. 1].

2.2.1 Autonomous driving system testing

Testing is essential for assuring Autonomous driving system operative safety [17, p. 163].
Several methods for testing exist, testing various aspects of the Autonomous driving
system. An ADS typically exists of several modules, all working together and handling
different aspect of the Autonomous driving system.

Huang et al. outline several typical architectures for ADS testing, drawing on
traditional software testing traditions outlining how software testing can be used

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 2. Background

alongside more specialized ADS testing techniques such as simulation testing and X-
in-the-loop testing [17, pp. 163-164].

2.2.2 Autonomous driving system driveability

Driveability is a high-level estimator of the overall driving condition of an ADS, derived
from several lower-level sources [16, p. 3140]. It can be used to refer to various aspects
of a scene. Guo, Kurup, and Shah discuss the concept further, using the scene definition
of Ulbrich et al. as outlined in Section 2.2.77?¢ they describe how driveability can refer
both to (1) road conditions, and (2) human driver performance. Guo, Kurup, and Shah
go on to give an overview of how driveability can be used to refer to a (3) driveability
map which divides a map into cells indicating where the ADS expects that it will be able
to go, and (4) object driveability, which refers to the classification of physical objects in
the environment that the ADS expects that it can run over without causing damage to
the ego vehicle [16, pp. 3135-3136].

The main method for assessing the driveability of a scene comes form assessing the
environment of the scene. Factors such as (1) weather, (2) traffic flow, (3) road condition,
and (4) obstacles all play into this. The ADS infers information from observation [16,
p. 3136].

They continue to give an overview of various driveability factors and their associated
difficulties, using a a split between explicit and implicit factors.

Explicit driveability factors will typically include factors such as Extreme
weather such as (1) fog, (2) heavy rain, (3) snow, all serving to impair road visibility
and causing increased difficulties for vision-based tasks such as road detection and object
tracking [16, pp. 3136-3137|. Illumination also poses various challenges for typical ADS
tasks as a typical ADS will be required to operate in a plethora of scenes with varying
degrees of illumination depending on factors such as time of day and location (e.g. if
the ADS is operation in a dimly lit tunnel) [16, p. 3137]. The authors highlight how low
illumination may serve as an advantage for the ADS as this allows for using the head
lights of other vehicles as a feature for detecting them, whereas it make pedestrian
detection significantly more challenging [16, p. 3137]. Road geometry is another
external factor, satisfying our natural intuition that intersections and roundabouts are
more difficult to drive through than straight highways [16, p. 3137].

Implicit driveability factors consist of behaviours and intent of other road
users interacting with the autonomous car [16, p. 3138]. This includes the actions
of other vehicles such as their (1) overtaking, (2) lane changing, (3) rear-ending,
(4) speeding, and (5) failure to obey traffic laws . Guo, Kurup, and Shah call these
factors vehicle behaviours [16, p. 3138]. Furthermore, pedestrian behaviours are
also taken into account, noting how pedestrians can sometimes (6) cross the road,
(7) be inattentive, or (8) fail to comply with the traffic law [16, p. 3138]. They go on to
describe the driver behaviour of other drivers pointing out how (9) distraction, and
(10) drowsiness can be factors that cause accidents even for ADS-enhanced vehicles due
to the other, manual, cars interfering with their operation [16, pp. 3138-3139]. Lastly
motorcyclist/bicyclist behaviours cause their own source of implicit driveability
factors: The models and methods developed for analysing the group’s behaviour are
far more limited than other groups of road users [16, p. 3139]. Guo, Kurup, and Shah
theorise that this comes down to the lack of available datasets that capture and label
the trajectories and behaviours of motorcyclists and bicyclists [16, p. 3139], causing
potential issues for any ADS that wishes to operate in a shared traffic environment with
this group.

Draft of October 1, 2025 (commit: 74¢5780)

2.2. Autonomous driving systems (ADSs)

2.2.3 Autonomous driving system testing metrics

When evaluating ADS testing, several metrics can be used. What metric to use will
depend on what the relevant test is measuring.

Building on what we have learnt about driveability (Section 2.2.27%*), we take after
Guo, Kurup, and Shah and review three metrics for quantifying driveability: (1) scene
driveability, (2) collision-based risk, and (3) behaviour-based risk.

Scene driveability refers to how easy a scene is for an ADS to navigate, and the
scene driveability score refers to how likely the Autonomous driving system is to fail at
traversing the scene [16, p. 3140]. It is typically found through and end-to-end approach.
Note how this is a metric for scenes, without taking into account the performance of any
specific ADS.

Collision-based risk comes in two kinds - (1) binary risk indicator, and
(2) probabilistic risk indicator. Guo, Kurup, and Shah posit that the prior, binary
metric, indicates whether a collision will happen in the near future in a binary ‘either-
or’ sense, whereas the latter yields a probability calculated based on current states,
event, choice of hypothesis, future states and damage [16, p. 3140].

Behaviour-based risk estimation also represents a binary classification problem
wherein nominal behaviours are learnt from data, and then dangerous behaviours are
detected on that. This requires a definition of ‘nominal behaviour’, which is typically
defined on on acceptable speeds, traffic roles, location semantics, weather conditions
and/or the level of fatigue of the driver [16, p. 3140]. Furthermore Guo, Kurup, and Shah
describe how this metric also allows more than one ADS to be labelled as ‘conflicting’
or ‘not conflicting’ [16, p. 3140], representing a ruling on their compatibility. Finally,
they note how behaviour-based risk assessment typically focuses on driver behaviours,
not taking into account other actors in the scene such as pedestrians or cyclists.

2.2.4 The complexities of ADS testing

As we have seen, ADSs can perform several tasks, in several environments. As such,
there are several relevant factors for testing them. It is not feasible to test all potential
variations of all potential environments in the real world, meaning that the test coverage'
typically will be low.

Some of the factors that complicate ADS operations are (1) timing, (2) sequence of
events, and (3) parameter settings such as the different speeds of various vehicles and
other actors.

Park, Yang, and Lim posit that the concept of complexity exists everywhere, but there
is mo agreement on one for driving situations [30, p. 1182]. Therefore they introduce
their own concept of Driving situation complexity (DSC), which serves to give a metric
of a the complexity of a given driving situation. Their DSC is defined as the output
of a mathematical formula taking into account the perplexity and standard deviation
of several control variables M representing the surrounding vehicle’s behaviour [30,
p. 1182]. Their formula also takes into account the ratio of V2X-capable vehicles [30,
p. 1182], i.e. the vehicles that are connected and capable of communicating [39, p. 1].

2.2.5 Autonomous driving system simulation

Due to the complexity involved in testing Autonomous driving systems (Sec-
tion 2.2.47%°®), simulators are typically used for this purpose [27]. While the same

'See Test coverage ~P-*

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 2. Background

points about not being able to test all possible scenarios do remain true for simulator
based testing due to the sheer number of factors, using a simulator allows for far greater
testing at far lower cost due to the minimal overhead of (1) generating, (2) running, and
(3) evaluating the outcome of test cases.

Furthermore, simulators allow for greater flexibility in determining the test scenarios
due to not being confined by the physical world that is available to the scientist that
wishes to perform the testing. Using a simulator, a Europe-based scientist can test their
ADS for North American conditions, or vice-versa.

2.2.6 The ADS simulator jungle

Due to the appeal of running ADS simulation, several contenders exist on the market.

Carla is a widely used ADS simulator [12]. It is implemented using the game
engine UnrealEngine [13] and allows for running test cases under various scenarios and
collecting their results. Carla is fully open source and is under active development. It
has been applied in projects such as KITTI-Carla, which generated a KITTI dataset
using Carla [10].

LGSVL is a deprecated simulator from LG [32]. It was used in projects such
as DeepScenario [27]. It allowed for running various maps with various vehicles and
tracking their data. It was also capable of generating HD maps 2. DeepScenario is a
project similar to this, concerned with testing Autonomous driving systems. Further
details about it in are located in Related work —?-1¢,

AirSim is Microsoft’s offering [34]. It has, like LGSVL, been deprecated. It is also
built using UnrealEngine. Unlike the other simulators we have seen, this also focused
on autonomous vehicles outside of only cars, such as drones.

2.2.7 Concepts of ADS simulation

Ulbrich et al. draw up an outline for the terms scene, situation, and scenario, that are
all concepts widely used in ADS simulation testing.

scene is a term that is used in different manners in various articles [37, p. 982], but
Ulbrich et al. propose standardising the definition on a scene describing a snapshot of the
environment including the scenery and dynamic elements, as well as as all actors’ and
observers’ self-representations, and the relationships among those entities [37, p. 983].

situation is, like scene, employed in various fashions. Ulbrich et al. give a
background detailing its usage ranging from 'the entirety of circumstances, which are
to be considered by a robot for its selection of an appropriate behaviour pattern in a
particular moment’, in Wershofen and Graefe [41, p. 3] to Schmidt, Hofmann, and
Bouzouraa introducing a distinction between the true world in a formal sense, and that
being the ground truth upon which a situation is described [33, p. 892].

Ulbrich et al. propose to standardise on the definition of a situation being the entirety
of circumstances, which are to be considered for the selection of an appropriate behaviour
pattern at a particular point of time [37, p. 985].

scenario refers to the temporal development between several scenes in a sequence
of scenes’[37, p. 986]. We note how the definition a a scenario utilises that of a scene.
Furthermore, Ulbrich et al. hold it to be the case that ’every scenario starts with an
initial scene. Actions € events as well as goals € values may be specified to characterize

Zhttps://github.com/Igsvl/simulator?tab=readme-ov-file#introduction
3The translation from German is borrowed from Ulbrich et al., [37, p. 984]

https://github.com/lgsvl/simulator?tab=readme-ov-file#introduction

Draft of October 1, 2025 (commit: 74¢5780)

2.3. Large Language Models (LLMs)

this temporal development in a scenario’ [37, p. 986], clarifying the distinction between
a scenario and a scene.

Lastly they posit that a scenario spans a certain amount of time, whereas a scene
has no such temporal aspect to it.

When running a simulation, we refer to the autonomous vehicle that is being
simulated as the ego vehicle [15].

ADS scenario formats

OpenSCENARIO is a standard developed by the Association for Automation and
Measurement Systems (ASAM), which is dedicated to the description of dynamic
scenarios [7, p. 651]. Under this format, only the dynamic content of the scenario is
recorded in the file. The static content is kept in other formats such as OpenDRIVER
and OpenCRG [7, p. 652]. The simulator Carla (outlined in Section 2.2.6 7*°) supports
this standard [7, p. 652].

Another widely popular scenario format is CommonRoad [25, p. 4941], first
proposed in 2017 [2]. There are tools such as those proposed by Lin, Ratzel, and Althoff
that allows for converting OpenSCENARIO scenarios to the CommonRoad format [25,
p. 4941].

2.3 Large Language Models (LLMs)

Large Language Models (LLMs) are transformer-based language models that typically
contain several hundred billion parameters and are trained on massive text data [43,
p. 4]. Base language models, as the name implies, model language. They are typically
statistical models and an example of Machine learning (ML).

2.3.1 Large Language Model (LLM) architecture

A Large Language Model is a neural network trained on big data [43, p. 3]. They expand
on the older statistical language models by training on more data. This gives rise to
emerging abilities such as in context learning [43, p. 3] (Emergent abilities 7#®). These
older statistical models are also neural networks, but they were impractical to train on
large amounts of data. It was not until the seminal paper ATTENTION IS ALL YOU
NEED [38] that a Google team headed by Vaswani et al. showed how neural networks
can be trained in parallel using their new attention mechanism. This allowed for using
amounts of data that was not technologically practical up until that point, opening the
door for later advancements such as ChatGPT [43, p. 9]
Jurafsky and Martin describe how LLMs rely on pretraining.

The importance of training data

As a consequence of LLMs being statistical models of a certain input data [43, p. 1], what
data the model is trained on is of great importance for the capabilities of the model [43,
p. 6]. Zhao et al. give an overview of various LLMs and what kinds of corpora? they
have been trained on [43, pp. 11-14].

The training data will provide the model with its base understanding of the world,
and as such it will dictate (1) what it ‘knows’, and (2) how we should interact with

4A corpus (pl. corpora) refers to a document collection.

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 2. Background

it. E.g., if we want to solve problems related to software code, we should employ a
model that has been trained on software code related topics so that the probability of it
predicting correct tokens will be higher. If it has not seen any code during its training it
would not have any base ‘knowledge’ for solving our problem, and its output would be
bad. The LLM would however have no way of knowing if its output would be right or
wrong, and we could say that it would have hallucinated. See General challenges with
LLMs 7?* for further information about hallucination.

2.3.2 Emergent abilities

Wei et al. outline how emergent abilities appear when scaling up language models [40,
p. 1]. They define emergent ability to refer to abilities that are not present in smaller
models, but present in the larger ones[40, p. 1], building on physicist Anderson stating
that Emergence is when quantitative changes in a system result in qualitative changes
in behaviour. [40, p. 2].

Furthermore, they discuss how few-shot prompting typically can achieve far superior
results for harvesting LLLM emergent abilities, whereas one-shot prompting can perform
worse than randomized results [40, pp. 3—4].

They continue outlining several approaches for achieving augmented prompting
strategies, underlining how (1) multi-step reasoning (2) instruction following (3) program
execution, and (4) model calibration all serve as possible ways of increasing LLM
performance [40, p. 5].

2.3.3 Intelligence in LLMs

There are three theories on machine intelligence, each serving to explain how they ‘think’:
(1) stochastic parrot (2) Sapir-Whorf hypothesis, and (3) conceptual blending.

Stochastic parrot

Bender et al. outline how LLMs can fool humans as they are trained on ever larger
amounts of parameters and data, appearing to be in possession of an intelligence [4,
pp. 610-611].

This anticipates the phenomenon of hallucination (Section 2.3.57?1°).

Sapir-Whorf hypothesis

The Sapir-Whorf hypothesis posits that The structure of anyone’s native language
strongly influences or fully determines the world-view he will acquire as he learns the
language. [5, p. 128].

We note how this maps to our LLMs, indicating that they will only ever be able to
‘know’ the data on which they have come into contact with.

Or: Language defines the possible room for thought.

Conceptual blending

Conceptual blending is a theory on intelligence. It refers to the basic mental operation
that leads to new meaning or insight that occurs when one identifies a match between to
input mental spaces, to project selectively from those inputs into a new ‘blended’ mental
space [14, pp. 57-58].

8

Draft of October 1, 2025 (commit: 74¢5780)

2.3. Large Language Models (LLMs)

This phenomenon explains how we are able to imagine phenomena that logically
should not exist such as land yacht (Land yacht conceptual blend ~*9)

water \ land
skipper / driver
course \ { road

yacht

tycoon

/ _/ .
7 v/

highway

Figure 2.1: The conceptual blend of a land yacht®

We note how this is how LLMs operate when processing vectorized linguistic data.

2.3.4 Utilising LLMs - Prompt engineering

A typical way of interacting with LLMs is prompting [43, p. 44]. You prompt the model
to solve various tasks. As we saw in Emergent abilities 7?8, the level of performance you
are able to extract from your Large Language Model can depend a great deal on how you
interact with it. The process of manually creating a suitable prompt is called prompt
engineering [43, p. 44]. Zhao et al. outline three principal prompting approaches:

In-context learning (ICL) is a representative prompting method that formulates
the task description and/or demonstrations in natural language text [43, p. 44]. It is
based on tuning-free prompting and it, as the name implies, never tunes the parameters
of the LLM [26, p. 15]. One the one hand, this allows for efficiency, but on the other
hand, heavy engineering is typically required to achieve high accuracy, meaning you
must provide the LLM with several answered prompts [26, p. 16]. In layman’s terms,
ICL entails including examples of the process you want the model to perform when
prompting it.

Chain-of-Thought (CoT) prompting is proposed to enhance In-context learning
by involving a series of intermediate reasoning steps in prompts [43, pp. 44, 52]. The

SDiagram borrowed from Fauconnier and Turner, [14, p. 67].

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 2. Background

basic concept of CoT prompting, is including an actual Chain-of-Thought inside the
prompt that shows the way form the input to the output [43, p. 52]. Zhao et al. note
that the same effect can be achieved by including simple instructions like ‘Let’s think
step by step’ and other similar ‘magic prompts’ in the prompt to the LLM, making CoT
prompting easy to use [43, p. 52].

Planning is proposed for solving complex tasks, which first breaks them down into
smaller sub-tasks and then generates a plan of action to solve the sub-tasks one by
one [43, pp. 44, 54]. The plans are being generated by the LLM itself upon prompting
it, and there is a distinction between text-based and code-based approaches. Text-based
approaches utilise natural language, whereas code-based approaches utilise executable
computer code [43, pp. 54-55].

2.3.5 General challenges with LLMs

We have seen that LLMs demonstrate promising abilities (Emergent abilities 7?®) But
they have nevertheless certain issues attached to them that we need to be aware of.

Hallucination

As we saw in Section 2.3.3 7 ?-®, LLMs are prone to bullshitting. They have no intuition of,
or concern with the truth. They only ever yield whatever response is the most probable
under their BEAM SEARCH algorithm being applied on their training data.

Environmental concerns

A University of Rhode Island study on the environmental impact of LLMs have shown
that they require wast amount of energy and water [18]. They also found that the
different LLMs may differ greatly in their energy consumption, highlighting that that
certain LLMs may consume more than 70 times more energy than others [18].

Another study by Tomlinson et al. focusing specifically on carbon emissions did
however find that these emissions significantly lower for LLMs than humans for specific
tasks such as text and image generation, ranging from 130 to 2900 times less Co2 emitted
depending on the task [36, p. 1].

Li et al. surveyed the water consumption of LLMs, finding that training the LLM
GPT-3 could evaporate as much as 700000 litres of clean freshwater [23, p. 1].
Furthermore they review the trends of current Al adoption and project that the water
consumption of Al could reach levels as high as 4.2 - 6.6 billion cubic metres by 2027,
which is comparable to 4 - 6 Denmarks, or half of the United Kingdom [23, p. 1]. Recent
research indicates that serving LLMs currently account for more emissions than training
them [11, p. 37].

Efforts to achieve greener LLMs have been proposed by Li et al., while recognizing
the trade-off between ecological sustainability and high-quality outputs [22, p. 21799].

2.3.6 The different kinds of LLMs

There are several available LLMs, some of which are open source, and some proprietary.
Open source LLMs afford greater insight into their composition and underlying training
data, whereas proprietary models appear more like black boxes. Some popular model
families include the GPTs, Gemini, Llama, Claude, Mistral, and DeepSeek.

The LLMs differ primarily in their (1) parameters, and (2) training data. As we
saw in Section 2.3.1 7?7 all typical LLMs utilise a transformer-based neural network.

10

Draft of October 1, 2025 (commit: 74¢5780)

2.3. Large Language Models (LLMs)

But due to their various different properties, different models can behave differently for
different tasks regardless of their similar architecture.

What they all share is their ability to perform inference, meaning that they predict
output tokens given some input tokens (see Section 2.3.3 7?%).

2.3.7 Existing LLM applications for ADSs

Cui et al. give a broad overview of some of the ways LLMs have been applied for ADSs,
highlighting some of the opportunities and potential weaknesses of LLM applications
for ADS purposes. One of the ways LLMs can be applied, is for adjusting the driving
mode, or aiding in the decision-making process [9, p. 1]. Cui et al. delve further into these
aspects in their other work “Drive As You Speak: Enabling Human-Like Interaction With
Large Language Models in Autonomous Vehicles”, providing a framework for integrating
Large Language Model’s (1) natural language capabilities, (2) contextual understanding,
(3) specialized tool usage, (4) synergizing reasoning, and (5) acting with various modules
of the ADS [8, p. 1].

11

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 3

Problem description

A problem well stated is a problem
half solved.

Charles F. Kettering

3.1 Cost

Traditional techniques for obtaining ADS scenarios rely on high skilled manual labour.
This incurs a significant cost, and is a major limitation in obtaining a large number of
good scenarios, free from the bias of the author

3.2 Impossible to test all scenarios

Furthermore, even if we were to imagine a world in which we had infinite (1) time and
(2) money , we would not be able to successfully account for every possible scenario.
This is a reality we need to deal with. One possible measure of remedying with this,
could be to decrease the driveability of our existing scenarios. Decreasing the driveability
is not the same as suddenly having access to the infinite set of possible scenarios, but it
is reasonable to infer that begin able to test the ADS (in a simulator) on these enhanced
low-driveability scenarios will leave it better fit for encountering other low-driveability
scenarios in the wild during operation.

3.3 Edge cases

Edge cases can be a major issue for ADS adoptation. The tail problem as it is known
in the ML field posits that ML tasks are faced with a long tail of unseen cases. We can
map these unseen cases, to our unseen ADS scenarios. Because of this, an ADS can be
at risk of encountering an unseen edge case scenario during operation — something for
which it might never have been tested. Arguing that the ADS would probably crash
simply due to it finding itself in an unseen scenario is not logical. But it is important
to keep in mind that the end we are pursing in the broader adaption of Autonomous
driving systems (ADSs), is increased saftey and efficiency on our roads. Not sufficiently
testing the ADS before deploying it would not serve our goal of increasing road safety —
it would be a gamble with human lives.

12

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 4

Literature review

TODO: Write literature review
Can move some things from related work such as LLM4AD?

4.1 Graz University of Technology survey on LLM applications
for Autonomous driving systems

Zhao et al. give an extensive overview of some of the various ways that LLMs have been
applied to scenario based testing of Autonomous driving systems. The authors classify
the various research efforts based on (1) how they have employed the LLM, and (2) to
what end [44]. Their survey is continually updated, the last update having been made
2 months before the time of writing!. This entails a certain overlap with some of the
works we review in Related work 7?1,

Not deterred by this, let us delve into the survey: They start by highlighting the
trend between the number of LLM surveys, and ADS surveys — while the trend was
increasing from 2020-23, there was an explision in 2024, with about 200 works concering
applying LLMs for Autonomous driving system purposes being published [44, p. 1,
figure (b)]. Furthermore, the number of ADS studies has remained steady over the last
4 years, wheras the number of LLM studies has exploded in popularity [44, p. 1, figure
(a)]. This indicates that a significant amount of the scientific effort around ADSs the
last year, has been concerned with utilising LLMs.

4.1.1 Meta survey review

The article summarizes the field, pulling together various surveys of the related subfields.
Those being (1) LLM surveys, (2) surveys of scenario-based testing, (3) general cases of
LLMs for ADSs, and finally (4) a broader review of surveys of LLMs being applied for
miscellaneous domains , for each highlighting their specialized foci [44, p. 2].

4.1.2 The categories of ways of applying LLMs for ADS testing

The authors posit that there are 0 major categories of works of LLMs being applied to
Autonomous driving systems. They are.

T.e. as of September 17th 2025, the last update to their Github repo was on July 23rd, 2025. The
paper on Arxiv was last updated May 22nd 2025.

13

https://github.com/ftgTUGraz/LLM4ADSTest

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 4. Literature review

4.1.3 The 5 key challenges when applying LLMs for ADS testing

Furthermore

14

Draft of October 1, 2025 (commit: 74¢5780)

Part Il
The project

15

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 5

Related work

Learn from the mistakes of others.
You can’t live long enough to make
them all yourself.

E. Roosevelt

5.1 DeepScenario

DeepScenario is both a dataset and a toolset aimed at Autonomous driving system
testing [27]. The principal value proposition of this work lies in recognizing the fact
that (1) there are an infinite number of possible driving scenarios, and (2) generating
critical driving scenarios is very costly with regard to time costs and computational
resources [27, p. 52]. The authors therefore propose an open driving scenario of more
than 30000 driving scenarios focusing on ADS testing [27, p. 52]. The project utilises
traditional machine learning methodologies, having been performed prior to the broad
adaptation of LLMs.
Its scenarios are intended for the simulator SVL by LG (Section 2.2.6 7?°).

5.2 RTCM

RTCM is a ADS testing framework that allows the user to utilise natural language for
synthesizing test cases. The authors propose a domain-specific language — called RTCM,
after RESTRICTED TEST CASE MODELLING — for specifying test cases. It is based on
natural language and composed of (1) an easy-to-use template, (2) a set of restriction
rules, and (3) keywords [42, p. 397]. Furthermore, they also propose a tool to take
this RTCM source code as input and generating either (1) manual, or (2) automatically
executable test cases [42, p. 397]. The proposed tools were evaluated in experiments
with industry partners, successfully generating executable test cases [42, p. 397].

5.3 DeepCollision

Lu et al. utilise Reinforcement learning (RL) for ADS testing, with the goal of getting the
ADS to collide. They used collision probability for the loss function of the Reinforcement
learning algorithm [28, p. 384]. Their experiments included training 4 DeepCollision
models, then using (1) random, and (2) greedy models for generating a baseline to

16

Draft of October 1, 2025 (commit: 74¢5780)

5.4. AutoSceneGen

compare their models with. The results showed that DeepCollision demonstrated
significantly better effectiveness in obtaining collisions than the baselines. While not
specifically focused on testing, we recognize that their work is thematically similar to
our envisioned project.

5.4 AutoSceneGen

AutoSceneGen is a framework for ADS testing using LLMs, focusing on the motion
planning of Autonomous driving system [1, p. 14539]. Aiersilan highlights how LLMs
provide opportunities for efficiently evaluating ADS in a cost-effective manner [1,
pp. 14539-14540]. They generate a substantial set of synthetic scenarios and experiment
with using (1) only synthetic data, (2) only real-world data, and (3) a combination of
the 2 as training data. They find that motion planners trained with their synthetic data
significantly outperforms those trained solely on real-world data [1, p. 14539].

5.5 LLM4AD

LLM4AD is a paper that gives a broad overview of LLMs for Autonomous driving
system. It touches on several of the various ADS applications where LLMs are relevant
such as (1) language interaction, (2) contextual understanding, (3) zero-shot and few shot
planning allowing LLMs to perform tasks they weren’t trained on, helping with handling
edge cases (4) continuous learning and personalization, and finally (5) interpretability
and trust [9, p. 2]. Furthermore, the authors also propose a comprehensive benchmark
for evaluating the instruction-following abilities of an LLM based system in ADS
simulation [9, p. 1].

5.6 LLM-Driven testing of ADS

Petrovic et al. worked on using LLMs to for automated test generation based on free-form
textual descriptions in the area of automotive [31, p. 173]. They propose a prototype
for this purpose and evaluate their proposal for ADS driving feature scenarios in Carla.
They used the LLMs GPT-4 and Llamag, finding GPT-4 to outperform Llamag3 for the
stated purpose. Their findings include this LLM-powered test methodology to be more
than 10 times faster than traditional methodologies while reducing cognitive load [31,
p. 173].

5.7 Requirements All You Need?

Lebioda et al. provide an overview of LLMs for ADS in their recent preprint Are
requirements really all you meed? A case study of LLM-driven configuration code
generation for automotive simulations', focusing on LLM’s abilities for translating
abstract requirements extracted from automotive standards and documents into
configuration for Carla (Section 2.2.6 7*°) simulations [21]. Their experiments include
employing the autonomous emergency braking system and the sensors of the ADS.
Furthermore, they split the requirements into 3 categories: (1) vehicle descriptions,
(2) test case pre-conditions, and (3) test case post-conditions (Pre- and post-
conditions 7?*) [21]. The preconditions they used included (1) agent placement,

I This was submitted to Arxiv on 2025-05-19.

17

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 5. Related work

(2) desired agent behaviour, and (3) weather conditions amongst others, whereas their
postconditions reflected the desired outcomes of the tests, primarily related to the
vehicle’s telemetry [21].

5.8 Language Conditioned Traffic Generation

Tan et al. look into using LLMs to generate specific traffic scenarios. They identify
the importance of being able to use simulators to test ADSs, and highlight how test
scenarios are expensieve to obtain [35, p. 1]. To this end, they propose a tool - LTCGEN
which employs the strengths of LLMs to match a natural language query with a fitting
underlying map?, and populates this with a (1) initial traffic distribiution, and (2) the
dynamics of all the vehicles involved in the scene. Something to note is that they generate
their scenarios, without initially taking the ego vehicle into account. The ego vehicle of
the scene is simply determined as the vehicle that is in the center of the first frame [35,

p. 3].

5.9 Scenario engineer GPT

Li et al. outline a framework for utilising the LLM-backed ChatGPT in order to generate
scenarios. They propose SeGPT — a scenario generation framework that they found to
yield significant progress in the domain of scenario generation [24, p. 4422]. They posit
that their prompt engineering ensures that the generated scenarios are authentically
diverse and challenging [24, p. 4423]. The focus is primarily on trajectory scenarios [24,
pp. 4422-4423].

Note how they explicitly mention scenario generation. Our approach for this project
has a different angle, with the focus being on modifying existing scenarios. More on this
in Proposed solution”?*. The difference between generating a ‘brand new’ scenario
with a model trained on exisiting scenarios, and modifying an existing scenario seems
like a matter of granularity. These are very similar concepts, only that the enhanced
scenario will have more common DNA whereas the other ‘new’ scenario will consist of a
broader range of DNA from its various underlying scenario corpora.

5.10 LLM driven scenario generation

Chang et al. also look into using Large Language Models to generate ADS scenarios.
They recognize several of the challenges we outline in Chapter 37?**. In their 2024
paper, they propose LLMSCENARIO, which is an LLM-backed framework for both
(1) scenario generation, and (2) evaluation feedback tuning [6, p. 6581].

They analyze scenarios in order to provide the LLM with a minimum baseline scenario
description, and propose score functions based on both (1) reality and (2) rarity. Their
prompting is based on Chain-of-Thought (CoT) and a posteriori emperical experience.
Lastly, they tested several Large Language Models for their experiments. Their results
were positive, indicating effectiveness for scenaro engineering in Industry 5.0 [6, p. 6581].

2Map as in a world in which a scenario can take place.

18

Draft of October 1, 2025 (commit: 74¢5780)

5.11. Chat2Scenario

5.11 Chat2Scenario

Zhao et al. propose a method for utilising LLMs to retrieve ADS scenarios given a
natural language query. Their framework synthesizes scenarios from naturalistic® driving
datasets, based on observation real world human driving [45, p. 55], that it then uses
as a database for retrieveing the scenario that best matches the user’s natural language
query. Furthermore, they employ traditional techniques for asserting the relevance of
the retrieved scenarios, allowing the user to specify a set of criticality metrics, of which a
certain threshold must be reached amongst the scenarios that are initalliy retried by the
LLM, pruning false positives. As a measure to increase the usability of their framework,
they also provide a webapp with an intuitive GUI for both (1) operating the tool, and
(2) visualizing the scenarios [45, p. 560].

In order to allow the LLM to determine whether a scenario is relevant under the
provided query, they put forward a method for classifying the various scenarios using
traditional ML techniques. This classification focuses primarily on highway scenarios
and the activities of other actors in relation to the ego vehicle [45, pp. 561-562].

Prompt engineering

The project’s prompts are ‘informed’ by the 6 OpenAl guidelines from their prompt
engineering guide*, ending up with a structured prompt of 5 segments. These segments
serve to guide the LLM, delineating its role as an ‘advanced Al tool for scenario
analysis, specifically tasked with interpreting driving scenario following a pre-established
classification model’ [45, p. 562]. They then input the user-provided description of the
scenario they wish to retrieve. Following this, a third segment declares the format for the
LLM response, followed by a prime example of In-context learning, demonstrating what
a satisfactory fulfillment of the desired format could look like. Lastly they instruct the
LLM to Remember to analyze carefully and provide the classification as per the structure
given above [45, p. 563].

3Their term. The intended meaning of naturalistic is not all clar to me.
*https://platform.openai.com/docs/guides/prompt-engineering (URL from the paper.)

19

https://platform.openai.com/docs/guides/prompt-engineering

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 6

Proposed solution

We have seen that ADS testing is compler and that it is difficult to get a good test
coverage (Section 2.2.47%*). Furthermore, we have seen that LLMs have emergent
abilities (Section 2.3.27%®). We therefore propose a tool for (1) running a base ADS
test case, (2) enhancing the test case using LLMs, (3) running the enhanced test case,
and (4) comparing the results of the two runs.

This will allow us to learn the extent to which LLMs can be applied for enhancing
Autonomous driving system test cases. We will survey several LLMs and evaluate their
applicability for the problem at hand, in light of what we know about LLMs (The
different kinds of LLMs~?*°). We want to have a pipeline that is able to process several
test cases in succession, in order to get a substantial dataset.

Let the pipeline tool be known as HEFE. The tool follows a natural pipeline structure.
We have some base test cases that need to be ran in order to get a baseline for the results,
we then have to improve these, and run the improved versions and compare them to their
original versions. The architecture of the tool is visualised in Figure 6.1 7?-*°.

Figure 6.1: HEFE pipeline architecture

We need to define what requirement we will use for determining the result of a test
case run. Without this, we cannot compare it to other test cases.

Furthermore, as outlined in Cui et al., Large Language Models can be applied to
several aspects of Autonomous driving system. It is not feasible that we focus on all
these aspects, and as such we should narrow down our scope. Let us review some of the
relevant aspects.

The applicability of LLMs in ADS testing

Autonomous driving system are typically modular, as we have seen in Section 2.2.4 7P,
LLMs are applicable to the different modules in different ways as we saw in Related
work P16,

20

Draft of October 1, 2025 (commit: 74¢5780)

6.1. Implementation language

User history of using HEFE

I have a set of Autonomous driving system (ADS) test cases. I provide this set to
HEFE. It will run the entire set, and generate a baseline of my ADS performance.
HEFE will then improve my test cases using Large Language Models and run them
again.

Lastly HEFE will report how the results differ from running the base and enhanced
version of a test case.

This will give me insight into what caused my ADS to fail so that I can look
into the cause of the error state and uncover underlying faults in the Autonomous
driving system.

6.1 Implementation language

The programming language PYTHON is widely used for Autonomous driving system
(ADS) simulation. It is a high level language, allowing the user great flexibility and
developer experience. For this reason, I will implement HEFE using Python.

Python can be optimized using Just-In-Time (JIT) compilers such as Numba [20],
which can speed up our execution times. Libraries such as Joblib provide Python with
plug-and-play meomization, which will allow us to re-use values that have already been
computed, saving time and energy.

6.1.1 The room for concurrency

When evaluating ADS test cases, the test cases are independent of each other. This
means that our problem is embarrassingly parallelizable ' and we can trivially process
several test cases in parallel. Due to practical limitations in Carla, running the test cases
should however probably be done sequentially. But (1) prompting, (2) enhancing, and
(3) validating, can all be done concurrently. While Python lacks support of traditional
threads, it has some support for multiprocessing 2.

6.2 Overview of the components of the HEFE pipeline

The pipeline architecture is visualised in HEFE pipeline architecture ”»*. Here we
present the major components and their responsibilities

6.2.1 Test case enhancement

Test case repositories

We have seen in Related work ~?-*¢ that there are existing repositories of ADS test cases.
These will provide us with (1) a baseline, and (2) data onto which we can apply our
LLM enhancements.

!https://en.wikipedia.org/wiki/Embarrassingly _parallel
2https://docs.python.org/3/library/multiprocessing.html

21

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://docs.python.org/3/library/multiprocessing.html

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 6. Proposed solution

LLM enhancement

The base test cases will individually be enhanced by prompting the LLM. We will
experiment with several LLMs.

For performing the actual improvement, it is essential that we (1) test several LLM,
(2) give clear prompts and (3) verify that the returned test case adheres to the strictly
necessary syntax rules. This last point is important due to our knowledge of LLMs
hallucinating (see General challenges with LLMs ~?-*°).

In order to facilitate testing various Large Language Models, we should employ
LLM agnostic software as a translation layer. This will allow us to write code for a
common interface and test several LLMs that may all have different internal Application
programming interfaces (APIs) without having to modify our test code for specific APIs.
This (1) saves time and (2) makes for more even test conditions . Some pieces of software
providing this type of functionality include AISUITE?, Ramalama from RedHat?, and
the MIT licensed Ollama®, both supporting a plethora of Large Language Models.

GUIDANCES is a framework for limiting the room in which LLMs may operate, which
might be useful if we run into issues with excessive hallucination.

Enhanced test case validation

We must expect the LLM to hallucinate to some extent (Section 2.3.57#*°). We therefore
propose to verify the format of the enhanced file before running it.

As we saw in the section for ADS scenario formats ~? ", there exists several formats
for ADS scenarios. In order to verify that the syntax of our enhanced test case is valid,
we simply need to apply the syntax rules of our format.

The CommonRoad format is XML-based [2, p. 720] and as such we can to some
extent assess the degree of hallucination by parsing the XML structure. Furthermore, it
has an exhaustive Python library with several utilities’.

OpenSCENARIO exists both as XML and a domain-specific language (DSL). If we
utilise the XML version, we can apply the same methodology as for the CommonRoad
format. If using the DSL version, one way the OpenSCENARIO format can be verified
is by using free online cloud services such as this offering from AVL . We should
however strive for running a local verification service to (1) save time and compute,
and (2) preserve data privacy. Besides, it is generally a good idea to limit the number

of external dependencies®.

6.2.2 Test case running and evaluation

Test case runner

The system will automatically run all our base test cases using an ADS simulator, and
collect data points to get a baseline. It will later also run the mutated LLM-enhanced
versions of the base cases.

3https://github.com/andrewyng/aisuite

*https://github.com/containers/ramalama

Shttps://github.com/ollama/ollama

Shttps://github.com/guidance-ai/guidance

"https://pypi.org/user/commonroad/

8https://smc.app.avl.com/validation

“Note for example how LGSVL[32] was shut down, preventing projects such as DeepScenario of Lu,
Yue, and Ali to be further developed on the original platform.

22

https://github.com/andrewyng/aisuite
https://github.com/containers/ramalama
https://github.com/ollama/ollama
https://github.com/guidance-ai/guidance
https://pypi.org/user/commonroad/
https://smc.app.avl.com/validation

Draft of October 1, 2025 (commit: 74¢5780)

6.2. Overview of the components of the HEFE pipeline

We have already ran the test cases in their base form. We will now run their
improved versions in order to compare them to see what effect the LLM enhancement
(see Section 6.2.17???) has had.

For the reasons we have seen in Section 2.2.6 7?° we want to run our test cases on
Carla. It is the best offering as it is open source, under active development and has a
feature rich Python API.

Test case improvement evaluation

We saw in Section 2.2.37?*° that there are several metrics for assessing ADS. We will
use these metrics when evaluating our improvements.

Test case result reporting

We will compare the results from running the baseline unmodified test case and
comparing it with the results from running the LLM-enhanced version and returning
to the user. Ideally with some automatic analysis of the results.

Having ran both the base test case and its enhanced counterpart, we have results.
The results will be stored in Comma separated values (CSV) files, allowing (1) further
analysis in Python/Jupyter, and (2) easy translation to I¥TEXtables for the final report.

This is the final step of the envisioned pipeline. Where we have our result, and need
to analyse them.

This last step has great opportunities for being scoped up to a fully integrated test
suite which allows for both running test cases and analysing the results in a Graphical
user interface (GUI). But we should focus on the prior steps for now, only creating a
GUTI if there is sufficient time towards the end of the project to focus on such non-LLM
related topics.

Initially, the results will consist of numerical comparison of the CSVs with regard to
the relevant metrics outlined in Test case improvement evaluation 7?2,

23

1

2

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 7

Implementation details

The implementation is what facilitates doing the actual experiments. For the most part,
it follows what is outlined in the Proposed solution ~?2°, with some minor practical
differences. What follows will analyze the impelementation of the components of the
HEFE pipeline and explain more closely in detail not only what they do, as that is already
covered in the solution proposal, but how they do it, with hands-on code examples.

All code is available on the Github repo master-hefe.

7.1 Carla interface and scenario utilities — Thor

The Thor module is responsible for all thigs related to the Carla ADS simulator. It
provides the client with several scenario-related utilities, and is capable of executing the
desired scenarios.

Certain of its utilities are simple tools for asserting the liveness of Carla, such as
the get_carla_is_up function, shown in listing 7.1. This function will use the Caral
standard Python library and attempt to connect to the server on its default port!.
Note that we refer to the host as simpyly carla — this is possible due to the entire
project running containerised with Docker Compose. Instead of refering to the speicifc
IP address of the Carla server (typically localhost, if not running it externally), the
Docker system will facilitate this name translation for us.

import carla

3 CARLA_HOST = "carla"

1

CARLA_PORT 2000

def get_carla_is_up() -> bool:
mnn
Check if the CARLA simulator is up and running.
This function attempts to connect to the CARLA server and returns
True if successful, otherwise False.
mnn
print ("Running carla integration check to see if it is up...")
try:
client = carla.Client (CARLA_HOST, CARLA_PORT)
client.get_world ()
return True
except Exception as e:
print (£"CARLA connection failed: {el}")

T.e. 2000, line #4 in listing 7.1.

24

https://github.com/orjahren/master-hefe

19

1
2
1
-
9
6
8
9

10

11
12
13
14
15
16

17

Draft of October 1, 2025 (commit: 74c5780)

7.2. LLM interface and prompt applications — Odin

return False

Listing 7.1: Exerpt from carla__interface.py, demonstrating the implementation of a Carla health
check.

This is used both to assert the general liveness of the HEFEpipeline, and to verify
that the simulator is available before performing experiments. It is better to detect this
illegal state before running experiments rather than during their execution.

Furthermore, it shall also be equipped with funcitonality for executing ADS scenarios
on Carla. This is trivial when using Carla’s existing Scenario Runner module’s
funcitonality. As of now, this has not yet been implemented due to greater challenges
in the LLM module — Odin.

7.2 LLM interface and prompt applications — Odin

The Odin module handles all things LLM. It provides a unified API for applying various
prompts to scenarios and returning the enhanced output resulting from having applied
the prompt. We hve implemented support for the LLMs that are available on (1) Ollama,
and (2) Gemini . This allows for testing with LLMs such as (3) Mistral 7.2B, and
(4) gemini-2.5-flash .

7.2.1 LLM interface implementations
Gemini integration

The Gemini integration is quite straightforward, relying on Google’s own genai Python
module. Listing 7.2 renders the entire interface, again highlighting how straightforward
this really is. The one piece of complexity to not is that it requires that the user provides
their own Gemini API key and has this set as an environment variable with the proper
name. Without this being as it should, the script will crash, as it would not possible for
it to complete the desired LLM enhancement regardless as long as the API key is not
present.

import os

from google import genai

7 def get_api_key() -> str:

api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise EnvironmentError ("GEMINI_API_KEY environment variable not
set.")
return api_key

client = genai.Client(api_key=get_api_key())

def api_is_up():
return True # Assume Google never dies...

TODO: Use decorator for asserting API liveness? Or standard assertion??
def execute_gemini_model (model_name: str, prompt: str) -> str:

25

Draft of October 1, 2025 (commit: 74c5780)

Chapter 7. Implementation details

oW

response = client.models.generate_content(
model=model_name or "gemini-2.5-flash",
contents=prompt

NN NN
J o w

‘\:
(e |
~

N

return response.text

Listing 7.2: llm__api_ interfaces/gemini_ interface.py, The implementation of a Gemini interface
for executing prompts.

Ollama integration

The Ollama integration is a bit more cumbersome. This motly comes down to it not
using any exisitng library modules for this specific purpose, instead relying on using
the json and requests modules to implement the desired funcitonality from scratch,
making it so that we need to handle network IO and marshalling the Large Language
Model (LLM) response into a fitting return buffer.

Listing 7.3 renders the entire interface. As we can see, it is not too bad allthough
nowhere near as clean as the Gemini implementation (7.2).

Its complexity arises principally from 2 major factors — (1) the already mentioned
manual networking, and (2) having to parse the streamed response Furthermore, this
code expects that the user already has an Ollama installation running on their host
machine. The code provides no means of setup for this — that is an entirely external
endeavour that is left up to the end user.

Similarly to how the Gemini implementation does it, this will crash if Ollama is
not funcitoning properly as it would not possible for it to complete the desired LLM
enhancement regardless if Ollama is unreachable.
import json
import requests

OLLAMA_API_URL = "http://localhost:11434"

g def api_is_up():

9 try:

10 response = requests.get (OLLAMA_API_URL)
11 return response.status_code == 200

12 except requests.ConnectionError:

13 return False

16 # ollama models
17 def get_ollama_models():

18 try:
19 response = requests.get (f"{OLLAMA_API_URL}/api/tags")
0 if response.status_code == 200:
return response.json() ["models"]
else:

return []
except requests.ConnectionError:
print ("Failed to connect to the API.")
return []

R W N =

N

NN NN NN NN

0

26

print (f"Failed to get models: {response.status_codel}")

Draft of October 1, 2025 (commit: 74c5780)

7.2. LLM interface and prompt applications — Odin

TODO: Use decorator for asserting API liveness? Or standard assertion??
def execute_ollama_model (model_name: str, prompt: str):
try:
payload = {
"model": model_name,
"prompt": prompt

}
print (f"Executing model {model_namel} with prompt: {promptl}")
response = requests.post(
f"{OLLAMA_API_URL}/api/generate", json=payload)
if response.status_code == 200:
result = ""
for line in response.iter_lines():
if line:
data = line.decode(’utf-8’)
try:
json_obj = json.loads (data)
result += json_obj.get("response", "")
except Exception as e:
print (f"Failed to parse line: {el}")
return {"text": result}
else:

print (f"Failed to execute model: {response.status_codel}")
return None
except requests.ConnectionError:
print ("Failed to connect to the API.")
return None

Listing 7.3: llm_api_interfaces/ollama.py, The implementation of an Ollama interface for
executing prompts.

7.2.2 Prompts and their associated code

In this project, the prompts are the instruction to the Large Language Model (LLM)
for applying the enhancement to the scenario. Quite possibly the most critical piece of
code related to the experiments. They need to take the base scenario as an input and
integrate it into the LLM context, such that it knows what it shall use as its base to
apply enhancements that will decrease the driveability. For this reason, it also provides
certain scenario utilities?.

Scenario utilities

These are essentially quite trivial helpers. Lisitng 7.4 render the core functionality —
hopefully this is quite self-explaining.

import os

TODO: Implementer denne
TODO: Fastslaa hvilket format vi bruker (OpenSCENARIO/CommonRoad/andre)
def file_format_is_valid(file_format: str) -> bool:

nwnon

Check if the file format is valid.

Args:
file_format (str): The file format to check.

2That architectually might as well have been integrated in the Thor module. . .

27

Draft of October 1, 2025 (commit: 74c5780)

Chapter 7. Implementation details

13 Returns:

14 bool: True if the file format is valid, False otherwise.
15 nnn

16 return file_format in ["json", "yaml", "yml", "csv", "txt"]

19 def enumerate_enhanced_scenarios(scenario_repository_path: str,

scenario_name: str) -> int:
nnn

21 Enumerate enhanced scenarios in a given scenario path.

22

23 Args:

24 scenario_repository_path (str): The path to the scemnario
directory.

25 scenario_name (str): The name of the scenario.

26

27 Returns:

28 int: The number of enhanced scenarios found.

29 e

30 # TODO: Can probably refactor this

31 acc = 0

32 for scenario in os.listdir(scenario_repository_path):

33 print (f"Checking scenario: {scenariol}")

34 if scenario_name in scenario and "enhanced" in scenario:

35 acc += 1

36 return acc

39 # TODO: Should use better names. Need a way of tracking enhanced scenario

40 # metadata

41 # - Timestamp

12 # - What prompt was used

43 # - What model was used

44 # - What the original scenario was

45 # - What changes were made?

46 def get_enhanced_scenario_name (scenario_repository_path: str,
scenario_name: str) -> str:

47 e

48 Get the enhanced scenario name.

49

50 Args:

51 scenario_repository_path (str): The path to the scenario
directory.

52 scenario_name (str): The base name of the scenario.

53

54 Returns:

55 str: The enhanced scenario name.

56 e

57 num_enhanced_scenarios = enumerate_enhanced_scenarios(

58 scenario_repository_path, scenario_name)

59 if num_enhanced_scenarios == 0:

60 return f"{scenario_namel}-enhanced"

61 else:

62 # Big brain time...who needs UUIDs when you can just count files?

63 return f"{scenario_namel}-enhanced-{num_enhanced_scenarios + 1}"

64

6:

66 def get_available_scenarios(scenario_repository_path: str) -> list:

67 def extension_is_ok(filename: str) -> bool:

68 # TODO: Verify which formats we want to support

28

69

70

G W N

-

08

I B e B B B B B |

®

81

Draft of October 1, 2025 (commit: 74c5780)

7.2. LLM interface and prompt applications — Odin

return filename in ["xosc", "py"]

return [filename for filename in os.listdir (scenario_repository_path)
if extension_is_ok(filename)]

TODO: Should strip newlines??
def scenario_path_to_string(scenario_path: str) -> str:
with open(scenario_path, ’r’) as file:
return file.read()

TODO: Let this function determine output file name?
def save_enhanced_scenario(scenario_str: str, output_path: str):
with open(output_path, ’w’) as file:
file.write(scenario_str)

Listing 7.4: scenario_ utils.py, The implementation of an various scenaro helper functions for
executing prompts.

Prompts — templating and usage

As mentioned, the prompts need to include the scenarios in them, so that they
are accessible to the LLM. How this is done, is rendered in listing 7.5. The most
interesting aspect is how the prompts are stored in the system as lambda functions.
This makes it so that they can take an argument that represents the scenario —
python_carla_scenario_raw(line #16) — and simply ezecute the function to insert
the scenario into the prompt (line #42). This is then inserted into the output prompt
at the location located at line #21 in the listing.

We wish to decrease the driveability of the scenario by enhancing it

with more
details, increasing its complexity

Prompt structure:

1 - Context: We are working with a driving simulation environment for the
Carla simulator.
2 - Task: Decrease the driveability of the scenario by enhancing it with
more details and complexity.
3 - Input: <scenario_description, in python carla scenario format>
4 - Output: An enhanced version of the scenario description with

additional
details and complexity, still in Python carla scenario format. ONLY
output the

code, without any additional text or explanation.
nmnn

PROMPTS = [
[...] # NOTE: Removed most prompts from this listing for brevity.
lambda python_carla_scenario_raw: f"""
1 - Context: You are a tool for decreasing the driveability of
scenarios in the driving simulator Carla.
2 - Task: Decrease the driveability of the scenario by enhancing it
with
more details and complexity, using only methods that are part of the
official Carla API, version 0.9.15.
3 - Input, the Python specification for the scenario: {
python_carla_scenario_raw}

29

Draft of October 1, 2025 (commit: 74c5780)

N
N

[N RN

w [V (] V] [V [%) (V)
S © o = R

32

39
10

11

Chapter 7. Implementation details

4 - Reasoning: Think step by step about how to make the scenario more
complex and less driveable, considering possible obstacles, traffic,

weather , and other factors using only the official Carla API.

5 - Output: Only output the enhanced scenario code in Python Carla
scenario format, with no additional text or explanation.

nnn
B

def name_to_prompt_idx(name: str) -> int:

mapping = {
"basic": O,
"no_explanation": 1,
"no_explanation_strict": 2,
"cot": 3,
"cot_strict_methods_in_file": 4,
"cot_strict_carla_api": 5,

}

return mapping.get (name, 0)

def get_prompt_for_python_scenario_enhancement (python_carla_scenario_raw:
str, prompt_name: str) -> str:
prompt_idx = name_to_prompt_idx (prompt_name)
return PROMPTS [prompt_idx](python_carla_scenario_raw)

Listing 7.5: experiments/testbed/prompts.py, The implementation of a prompt testbed for
executing prompts.

Lastly, note the comments in the top of the file, intended to give Github Copilot
increased understanding of the context, so that it can provide better aid during
programming.

7.3 Execution tool / user oriented frontend — LoKi

The final module of the HEFEpipeline is Loki — it is simply a tool intended to be used
by the user for operating the process. It (1) says what scenarios are available to it (i.e.
those that are eligble for being enhanced), and (2) allows the user to select a prompt
and (3) execute that prompt to the scenario of their choosing.

import pika
import requests

from odin.server import ODIN_PORT
from thor.server import THOR_PORT

ODIN_PORT
THOR_PORT

4000
6000

TODO: Merge health checks into a single function?
def do_thor_health_check ():
try:
res = requests.get(f"http://localhost:{THOR_PORT}/health")
except requests.ConnectionError:
print ("Thor server is not running or unreachable.")
exit (1)
if res.status_code == 200:
parse json

30

Bow N

i B B A R B R B B |
© ® 9 o !

®

def

def

def

def

Draft of October 1, 2025 (commit: 74c5780)

7.3. Execution tool / user oriented frontend — Loki

health_status = res.json().get("status", "unknown")

if health_status == "healthy":
print ("Thor is healthy.")

else:
print (£"Thor health check failed.: {health_statusl}")
exit (1)

elsels
print ("Thor health check failed.")
exit (1)

do_odin_health_check ():
try:

res = requests.get(f"http://localhost:{0DIN_PORT}/health")
except requests.ConnectionError:

print ("0din server is not running or unreachable.")

exit (1)
if res.status_code == 200:
health_status = res.json().get("status", "unknown")
if health_status == "healthy":
print ("0Odin is healthy.")
else:
print (£"0din health check failed.: {health_statusl}")
exit (1)
else:
print ("0din health check failed.")
exit (1)

run_test_case(test_case_id):
print (f"Running test case: {test_case_id}")

Run test case on Loki

result = requests.post(
f"http://localhost :{THOR_PORT}/run_test_case",
json={"test_case_id": test_case_id})

if result.status_code != 200:

print (f"Failed to run test case: {test_case_idl}")
return None
print (f"Test case {test_case_id} executed successfully.")
value = result.json().get("result", "No result found")
return value

get_enhanced_test_case(test_case_id):
print (f"Enhancing test case: {test_case_id}")

Enhance test case on 0din

result = requests.post(
f"http://localhost :{0ODIN_PORT}/enhance_test_case",
json={"test_case_id": test_case_id})

if result.status_code != 200:

print (f"Failed to enhance test case: {test_case_id}")
return None
print (f"Test case {test_case_id} enhanced successfully.")
value = result.json().get("result", "No result found")
return value

get_improvement (base_test_case, enhanced_test_case):
Simulate getting an improvement between two test cases

31

87

89
90
91

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119

120

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 7. Implementation details

TODO: Implement actual logic to compare test cases
return f"Improvement from {base_test_case} to {enhanced_test_casel}"

def send_test_message (message):
TODO: Implement proper credentail handling.
credentials = pika.PlainCredentials(’user’, ’pass’)
connection = pika.BlockingConnection(

pika.ConnectionParameters(’localhost’, credentials=credentials))

channel = connection.channel ()
channel.queue_declare (queue=’test_queue’)
channel.basic_publish(exchange=’’, routing_key=’test_queue’, body=
message)
print (f"Sent message to RabbitMQ: {messagel}")
connection.close ()

if __name__ == __main__

print ("Loki is running...")

do_thor_health_check ()
do_odin_health_check ()

send_test_message("Hello from Loki!")

exit (0)

test_case_id = "test_case_123"

print ("Starting test case execution...")
base_result = run_test_case(test_case_id)

print (f"Base result: {base_result}")

enhanced_test_case = get_enhanced_test_case(test_case_id)
enhanced_test_case_result = run_test_case(enhanced_test_case)
print(

f"Enhanced test case execution completed with result: {
enhanced_test_case_resultl}")

improvement = get_improvement (base_result, enhanced_test_case_result)
print (£f"Improvement: {improvement}")

print ("Loki execution finished.")

Listing 7.6: loki/main.py, The implementation of the Loki script.

Listing 7.6 renders the implementation of the script. It relies on the Odin and Thor
modules for all essential functionality, which is in line with what is to be expected as
this is simply a frontend client to reach them.

It is relies on the requests module for doing Remote procedure call (RPC) to the
other modules. There is also the outlines of a RabbitMQ implementation, which is why
pika is being imported. As of now, this is in non-functioning alpha. Implementation of
RabbitM(Q message passing has not been prioritized as there were, as mentioned, more
important issues to focus on that would yield better and more important results when
resolved. This would maintain feature parity with the requests-based approach.

32

N

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 8

Experiment methodology

The torment of precautions often
exceeds the dangers to be avoided. It
is sometimes better to abandon one’s
self to destiny.

Napoléon

8.1 Prompts

Prompting is our principal way of interfacing with the LLM. For this reason, our results
rely on (1) good, and (2) fitting prompts . Without this all is lost.

We therefore propose several prompting strategies, taking after related research
(Related work —»-1¢).

Prompts were determined by trial and error in an iterative manner, in conjunction
with Github Copoilot. They are all descendant of listing 8.1, each subsequent iteration
improving on the last based on what worked or did not worked when assessing the
output. Due to a techical detail of the HEFE implementation (LLM interface and prompt
applications — Odin 7*?*), the datype of the prompt is a lambda function that takes the
raw scenario represented as a string and then inserts it into the prompt in runtime. This
is represented by the curly braces on line 3 in listing 8.1.

lambda python_carla_scenario_raw: f"""

1 - Context: We are working with a driving simulation environment for the
Carla simulator.
2 - Task: Decrease the driveability of the scenario by enhancing it with
more details and complexity.
3 - Input: {python_carla_scenario_raw}
4 - QOutput: An enhanced version of the scenario description with

additional

details and complexity, still in Python carla scenario format.
nmnn

Listing 8.1: The first prompt.

8.2 Trying different LLMs

As we learnt in Section 2.3.6 7?*° there are several LLMs extant. We should experiment
with various different LLMs to maximize our chance of testing with a ‘good” LLM that

33

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 8. Experiment methodology

goes well with our stated purpose.
The results were first carried out using a locally hosted 7.2B parameter Mistral
model. Later, a Gemini model running on Google’s infrastrucutre was used.

8.3 Metrics

The way the Carla simulator works, one simulator run can be analyzed post factum.
The entire scenario execution is stored in a Carla-specific binary format. This binary file
can then later be analyzed, extracting various metrics from one run. This saves time not
having to run the simulator more than necessary, and allows for reproducing the metric
calculations from the original underlying binary log file.

Due to the immense file size of these logs', publishing all our raw files is not feasible.

'Keep in mind that they track all actors in the scene over time.

34

Draft of October 1, 2025 (commit: 74¢5780)

Part Il

Conclusion

35

Draft of October 1, 2025 (commit: 74c5780)

Chapter 9

Results

I have not failed. I've just found
10,000 ways that won’t work.

Thomas A. Edison

Our results show that the initially proposed solution of feeding bare ADS scenarios
represented by Python code into LLMs, does not yield any meaningful results. This is
caused by various reaons. The following discusses (1) why this is, and (2) ways by which
it can be remedied in future work .

See listing A.1 in the Scenario file diffs™?* appendix for a complete demonstration
of what the Large Language Model is capable of doing.

9.1 Output of the LLM

Depending on the prompt, our results show that it ¢s possible to get reasonable-looking
Python out of the LLM. One somewhat annoying detail is their bent to mark the code
as specific syntax, applying a Markdown-formatted code block indicating both that the
output is code, and what language it is in.,to the first and last line of the output (Listing
9.1).

¢‘““python

[scenario code 1]

¢

Listing 9.1: LLM-generated Python code with Markdown syntax. The bracketed part on line 3
has been added for demonstration purposes, removing the actual code for brevity.

Upon manually removing these syntactic artefacts, we can go ahead with executing
the scenario. But as previously mentioned, we are unable get any meaningful results.
This comes down to (1) halluciantion of Python code, and (2) Carla problems . Writing
code to programatically these lines is naturally trivial, but we have not gone ahead
with implementing this due to having the focus being on resolving the other issues that
prevented the scenarios from being executed properly.

Something worth noting is that the LLM demonstrates a promising ability to explain
back to the user how it ehnahced the scenario, e.g. in the fom of bullets in a docstring
of the output code (see listing 9.2).

36

1
2
3

1
-
15}

6

7

8
9

10

o

17

19

NN

w N

NN

Draft of October 1, 2025 (commit: 74¢5780)

9.1. Output of the LLM

#!/usr/bin/env python

Copyright (c) 2019-2020 Intel Corporation

#

This work is licensed under the terms of the MIT license.
For a copy, see <https://opensource.org/licenses/MIT>.

Cut in scenario:

The scenario realizes a driving behavior on the highway.

The user-controlled ego vehicle is driving straight and keeping its
velocity at a constant level.

Another car is cutting just in front, coming from left or right lane.

The ego vehicle may need to brake to avoid a collision.

Enhanced scenario:

- Increased background traffic with varying speeds to create a more
crowded environment.

- Challenging weather conditions (heavy rain, fog, strong winds) to
reduce visibility and grip.

- Nighttime setting to further decrease visibility.

- Randomization of speeds and trigger distances for increased
unpredictability.

nnn

[...]

Listing 9.2: Head of an LLM-enhanced scenario, highlighting how the LLM can add an explenation
of how it enhanced the scenario.

9.1.1 Hallucinations in the enhanced scenarios

The LLM typically seems to be on the right track, outlining something that sounds like
a good approach to satisfying our prompt of decreasing the driveability of the scenario.
But in practice, it will often hallucinate methods that don’t exist, or use terms and
phrasing that are not valid keywords in the Carla specificication. This is in line with
what was found by e.g. Aiersilan [1, p. 14542] (See AutoSceneGen ~?*" in Related work).

Non-existing methods

As mentioned, the LLM seems to have the right idea of what it can do to achieve the
stated goal. But the way that it goes about obtaining it, does not always work. The
enhanced scenario code will often call methods that don’t exist. This leads to a runtime
exception in the scenario runner when executing the enhanced scenario.

Non-existing arguments
In a similar vein to the non-existing methods, non-exisiting arguments were also shown
to appear. The LLM could simply call methods that were already being used, with

additional arguments that made semeantic sense, but that were not a part of the function
definition. This also causes runtime exceptions in the scenario runner.

37

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 9. Results

lllegal property keywords

Another trend we observed was the usage of various keywords that simply don’t exist
in the Carla repetoire. Where Carla would recognize the word ‘snowstorm’, the Large
Language Model (LLM) proposed using the word ‘blizzard’.

9.1.2 Carla crashes with certain scenarios

There appears to be a bug in Carla version 0.9.15' which causes the program to hard
crash when executing certain scenarios with metric recording enabled. This has been
reported to the project Github?, but as of 2025-09-30 it has not been resolved. Testing
shows that the same scenarios may be ran without crashing when not recording, but
this naturally has severe implications for our opportunities of obtaining data from the
simulation run. The ‘record’ function of the scenario runner is the crux of measuring
the driveability of the scenario.

9.2 Metrics used for evaluation

We measure several metrics for evaluating the driveability of the scenario. The principal
is jerk.

Due to the above resons with getting the enhanced scenarios to run, there is however
minimal data to bases any qualitative analysis on.

Which is the version employed for this project.
2By several members of the scientific community, see e.g.

« https://github.com/carla-simulator/carla/issues/9170 and
« https://github.com/carla-simulator/carla/issues/9152

38

https://github.com/carla-simulator/carla/issues/9170
https://github.com/carla-simulator/carla/issues/9152

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 10

Discussion

10.1 Environmental concerns

Cost /benefit with using LLMs. Refer back to General challenges with LLMs™?-*°.
While we demonstrated promising results in Chapter 97?3, it is important to keep
in mind the environmental cost of using the LLMs for this purpose. How good should
the results need to be in order to justify using LLMs?
Perhaps future work can look into obtaining similar results using greener strategies.

10.2 Realism in the enhanced scenario

It is very easy to get bad driveability if your scene is bonkers. But there is no real world

value/practical applicability in these scenarios?
https://www.simula.no/research/reality-bites-assessing-realism-driving-scenarios-large-language-models
Virker som at [6] har gjort et arbeid med & definere metrics for dette.

10.3 LLM context size

Hvis man har lange scenarios kan de overgd LLMens kontekst size og sa mister man
ting?

10.4 Python/ OpenScenario / DSI

Con med Python: LLMen kan bruke utdatert syntax / bruke ting som ikke stemmer
overens med den versjonen du vil bruke. De andre er mer "konstante" og mindre sarbare
for dete

39

https://www.simula.no/research/reality-bites-assessing-realism-driving-scenarios-large-language-models

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 11

Further work

11.1 LLM aspects

11.1.1 Different promtping strategies

Overdrivelser? Typ "Det er veldig viktig for meg at du gjor dette fordi da blir jeg glad"?
Vise til litteratur som underbygger sant.

11.1.2 Temperature

Hallucination.

11.1.3 Pretraining?
11.1.4 Retrieval-augmented generation (RAG)

Context, affordances.

11.1.5 More models

More models more good?

11.1.6 Tool calling

Can give the LLM access to tools, e.g. methods for adding objects etc.

11.2 GUI visualisations
Maybe: Frontend client - web GUI - Ivar If Loki does its job effectively, we can create
a web based frontend for doing the process. It could do the same as Loki, but with

greater ease of use. Having a GUI allows for making neat visualisations. Motivate why
our enhanced test cases are better by showing it.

11.3 Instant validation of test case syntax

Compiler-stuff. Syntax. Parsing.

40

Draft of October 1, 2025 (commit: 74¢5780)

11.4. Other datasets

11.4 Other datasets

We used dataset x for our experiments. Scenario datasets y and z can also be used

41

Draft of October 1, 2025 (commit: 74¢5780)

Chapter 12

Conclusion

In this master’s thesis, we propose a tool — HEFE— for using Large Language Models
(LLMs) to decrease the driveability of Autonomous driving system (ADS) scenarios in
order to expose underlying weaknesses in the ADS. We show this work is in line with
other works in the field, and we show that our results are TODO.

42

Draft of October 1, 2025 (commit: 74c¢5780)

Bibliography

Aizierjiang Aiersilan. “Generating Traffic Scenarios via In-Context Learning to
Learn Better Motion Planner”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 39. 14. 2025, pp. 14539-14547. por: 10.1609/aaai.
v39i14.33593.

Matthias Althoff, Markus Koschi, and Stefanie Manzinger. “CommonRoad:
Composable benchmarks for motion planning on roads”. In: 2017 IEEFE Intelligent
Vehicles Symposium (IV). 2017, pp. 719-726. pDo1: 10.1109/1VS.2017.7995802.

Philip W Anderson. “More Is Different: Broken symmetry and the nature of the
hierarchical structure of science.” In: Science 177.4047 (1972), pp. 393-396.

Emily M. Bender et al. “On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big?” In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. FAccT ’21. Virtual Event, Canada: Association
for Computing Machinery, 2021, pp. 610-623. 1sSBN: 9781450383097. po1: 10.1145/
3442188.3445922. URL: https://doi.org/10.1145/3442188.3445922.

Roger Brown. “Reference in memorial tribute to Eric Lenneberg”. In: Cognition 4.2
(1976), pp. 125-153. 1sSN: 0010-0277. poI: https://doi.org/10.1016/0010-0277(76)
90001-9. URL: https://www.sciencedirect.com/science/article/pii/0010027776900019.

Cheng Chang et al. “LLMScenario: Large Language Model Driven Scenario
Generation”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems
54.11 (2024), pp. 65681-6594. Do1: 10.1109/TSMC.2024.3392930.

He Chen et al. “Generating Autonomous Driving Test Scenarios based on
OpenSCENARIO?”. In: 2022 9th International Conference on Dependable Systems
and Their Applications (DSA). 2022, pp. 650-658. DOI: 10.1109/DSA56465.2022.
00093.

Can Cui et al. “Drive As You Speak: Enabling Human-Like Interaction With Large
Language Models in Autonomous Vehicles”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV) Workshops. Jan.
2024, pp. 902-909.

Can Cui et al. Large Language Models for Autonomous Driving (LLM/AD):
Concept, Benchmark, Ezxperiments, and Challenges. 2025. arXiv: 2410 . 15281
[cs.RO]. URL: https://arxiv.org/abs/2410.15281.

Jean-Emmanuel Deschaud. KITTI-CARLA: a KITTI-like dataset generated by
CARLA Simulator. 2021. arXiv: 2109.00892 [cs.CV]. URL: https://arxiv.org/
abs/2109.00892.

43

https://doi.org/10.1609/aaai.v39i14.33593
https://doi.org/10.1609/aaai.v39i14.33593
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/https://doi.org/10.1016/0010-0277(76)90001-9
https://doi.org/https://doi.org/10.1016/0010-0277(76)90001-9
https://www.sciencedirect.com/science/article/pii/0010027776900019
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/DSA56465.2022.00093
https://doi.org/10.1109/DSA56465.2022.00093
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2109.00892
https://arxiv.org/abs/2109.00892
https://arxiv.org/abs/2109.00892

Draft of October 1, 2025 (commit: 74c¢5780)

Bibliography

[11]

[16]

[17]

[18]

[20]

[21]

22]

[23]

44

Yi Ding and Tianyao Shi. “Sustainable LLM Serving: Environmental Implications,
Challenges, and Opportunities : Invited Paper”. In: 2024 IEEE 15th International
Green and Sustainable Computing Conference (IGSC). 2024, pp. 37-38. por: 10.
1109/1IGSC64514.2024.00016.

Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In:
Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1-16.

Epic Games. Unreal Engine. Version 4.22.1. Apr. 25, 2019. URL: https://www.
unrealengine.com.

Gilles Fauconnier and Mark Turner. “Conceptual Blending, Form and Meaning”.
In: Recherches en Communication; No 19: Sémiotique cognitive — Cognitive
Semiotics; 57-86 19 (Mar. 2003). por: 10.14428/rec.v19i19.48413.

Erwin de Gelder, Maren Buermann, and Olaf Op Den Camp. “Coverage Metrics
for a Scenario Database for the Scenario-Based Assessment of Automated Driving
Systems”. In: 2024 IEEFE International Automated Vehicle Validation Conference
(IAVVC). IEEE. 2024, pp. 1-8.

Junyao Guo, Unmesh Kurup, and Mohak Shah. “Is it safe to drive? An overview
of factors, metrics, and datasets for driveability assessment in autonomous
driving”. In: IEEFE Transactions on Intelligent Transportation Systems 21.8 (2019),
pp. 3135-3151.

WulLing Huang et al. “Autonomous vehicles testing methods review”. In:
2016 IEEFE 19th International Conference on Intelligent Transportation Systems
(ITSC). IEEE. 2016, pp. 163-168.

Nidhal Jegham et al. How Hungry is AI? Benchmarking Energy, Water, and
Carbon Footprint of LLM Inference. 2025. arXiv: 2505.09598 [cs.CY]. URL: https:
//arxiv.org/abs/2505.09598.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition with Language Models. 3rd. Online manuscript released January
12, 2025. 2025. URL: https://web.stanford.edu/~jurafsky/slp3/.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A Ilvm-based
python jit compiler”. In: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC. 2015, pp. 1-6.

Krzysztof Lebioda et al. Are requirements really all you need? A case study of
LLM-driven configuration code generation for automotive simulations. 2025. arXiv:
2505.13263 [cs.SE]. URL: https://arxiv.org/abs/2505.13263.

Baolin Li et al. “Sprout: Green Generative Al with Carbon-Efficient LLM
Inference”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing. Ed. by Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen. Miami, Florida, USA: Association for Computational Linguistics, Nov.
2024, pp. 21799-21813. por: 10.18653/v1/2024 .emnlp-main.1215. URL: hitps:
//aclanthology.org/2024.emnlp-main.1215/.

Pengfei Li et al. Making AI Less "Thirsty": Uncovering and Addressing the Secret
Water Footprint of AI Models. 2025. arXiv: 2304.03271 [cs.LG]. URL: https:
//arxiv.org/abs/2304.03271.

https://doi.org/10.1109/IGSC64514.2024.00016
https://doi.org/10.1109/IGSC64514.2024.00016
https://www.unrealengine.com
https://www.unrealengine.com
https://doi.org/10.14428/rec.v19i19.48413
https://arxiv.org/abs/2505.09598
https://arxiv.org/abs/2505.09598
https://arxiv.org/abs/2505.09598
https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/abs/2505.13263
https://arxiv.org/abs/2505.13263
https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://aclanthology.org/2024.emnlp-main.1215/
https://aclanthology.org/2024.emnlp-main.1215/
https://arxiv.org/abs/2304.03271
https://arxiv.org/abs/2304.03271
https://arxiv.org/abs/2304.03271

[26]

[29]

[30]

Draft of October 1, 2025 (commit: 74c¢5780)
Bibliography

Xuan Li et al. “ChatGPT-Based Scenario Engineer: A New Framework on Scenario
Generation for Trajectory Prediction”. In: IEEE Transactions on Intelligent
Vehicles 9.3 (2024), pp. 4422-4431. por: 10.1109/TIV.2024.3363232.

Yuanfei Lin, Michael Ratzel, and Matthias Althoff. “Automatic Traffic Scenario
Conversion from OpenSCENARIO to CommonRoad”. In: 2028 IEEE 26th

International Conference on Intelligent Transportation Systems (ITSC). 2023,
pp- 4941-4946. po1: 10.1109/ITSC57777.2023.10422422.

Pengfei Liu et al. “Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing”. In: ACM Comput. Surv.
55.9 (Jan. 2023). 1sSN: 0360-0300. por: 10.1145/3560815. URL: https://doi.org/10.
1145/3560815.

Chengjie Lu, Tao Yue, and Shaukat Ali. “DeepScenario: An Open Driving
Scenario Dataset for Autonomous Driving System Testing”. In: IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR) (2023), pp. 52—
56.

Chengjie Lu et al. “Learning Configurations of Operating Environment of
Autonomous Vehicles to Maximize their Collisions”. In: IEEE Transactions on
Software Engineering 49.1 (2023), pp. 384-402. po1: 10.1109/TSE.2022.3150788.

Y.K. Malaiya et al. “The relationship between test coverage and reliability”.
In: Proceedings of 1994 IEEE International Symposium on Software Reliability
Engineering. 1994, pp. 186-195. por: 10.1109/ISSRE.1994.341373.

Youngseok Park, Ji Hyun Yang, and Sejoon Lim. “Development of Complexity
Index and Predictions of Accident Risks for Mixed Autonomous Driving Levels”.
In: 2018 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). 2018, pp. 1181-1188. por: 10.1109/SMC.2018.00208.

Nenad Petrovic et al. “LLM-Driven Testing for Autonomous Driving Scenarios”.
In: 2024 2nd International Conference on Foundation and Large Language Models
(FLLM). 2024, pp. 173-178. po1: 10.1109/FLLM63129.2024.10852505.

Guodong Rong et al. “LGSVL Simulator: A High Fidelity Simulator for
Autonomous Driving”. In: arXiv preprint arXiv:2005.03778 (2020).

Max Theo Schmidt, Ulrich Hofmann, and M. Essayed Bouzouraa. “A novel goal
oriented concept for situation representation for ADAS and automated driving”.
In: 17th International IEEE Conference on Intelligent Transportation Systems
(ITSC). 2014, pp. 886-893. por: 10.1109/ITSC.2014.6957801.

Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles”. In: Field and Service Robotics. 2017. eprint: arXiv:1705.
05065. URL: https://arxiv.org/abs/1705.05065.

Shuhan Tan et al. Language Conditioned Traffic Generation. 2023. arXiv: 2307.
07947 [cs.CV]. URL: https://arxiv.org/abs/2307.07947.

Bill Tomlinson et al. “The carbon emissions of writing and illustrating are lower
for AI than for humans”. In: Scientific Reports 14.1 (2024), p. 3732.

Simon Ulbrich et al. “Defining and Substantiating the Terms Scene, Situation, and
Scenario for Automated Driving”. In: 2015 IEEFE 18th International Conference
on Intelligent Transportation Systems. 2015, pp. 982-988. po1: 10.1109/ITSC.2015.
164.

45

https://doi.org/10.1109/TIV.2024.3363232
https://doi.org/10.1109/ITSC57777.2023.10422422
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1109/TSE.2022.3150788
https://doi.org/10.1109/ISSRE.1994.341373
https://doi.org/10.1109/SMC.2018.00208
https://doi.org/10.1109/FLLM63129.2024.10852505
https://doi.org/10.1109/ITSC.2014.6957801
arXiv:1705.05065
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/2307.07947
https://arxiv.org/abs/2307.07947
https://arxiv.org/abs/2307.07947
https://doi.org/10.1109/ITSC.2015.164
https://doi.org/10.1109/ITSC.2015.164

Draft of October 1, 2025 (commit: 74¢5780)

Bibliography

[38]

[39]

[40]

[41]

[42]

46

Ashish Vaswani et al. “Attention is all you need”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS’17.
Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6000-6010. 1SBN:
9781510860964.

Jian Wang et al. “A Survey of Vehicle to Everything (V2X) Testing”. In: Sensors
19.2 (2019). 1sSN: 1424-8220. por1: 10.3390/s19020334. URL: https://www.mdpi.com/
1424-8220/19/2/334.

Jason Wei et al. Emergent Abilities of Large Language Models. 2022. arXiv: 2206.
07682 [cs.CL]. URL: hitps://arxiv.org/abs/2206.07682.

Klaus Peter Wershofen and Volker Graefe. “Situationserkennung als Grundlage
der Verhaltenssteuerung eines mobilen Roboters”. In: Autonome Mobile Systeme
1996. Ed. by Glnther Schmidt and Franz Freyberger. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 170-179. 1SBN: 978-3-642-80324-6.

Tao Yue, Shaukat Ali, and Man Zhang. “RTCM: a natural language based,
automated, and practical test case generation framework”. In: Proceedings of the
2015 International Symposium on Software Testing and Analysis. ISSTA 2015.
Baltimore, MD, USA: Association for Computing Machinery, 2015, pp. 397—408.
ISBN: 9781450336208. DoI: 10.1145/2771783.2771799. URL: https://doi.org/10.1145/
2771783.2771799.

Wayne Xin Zhao et al. A Survey of Large Language Models. 2025. arXiv: 2303.
18223 [cs.CL]. URL: https:/arxiv.org/abs/2303.18223.

Yongqi Zhao et al. A Survey on the Application of Large Language Models in
Scenario-Based Testing of Automated Driving Systems. 2025. arXiv: 2505.16587
[cs.SE]. URL: https://arxiv.org/abs/2505.16587.

Yongqi Zhao et al. “Chat2Scenario: Scenario Extraction From Dataset Through
Utilization of Large Language Model”. In: 2024 IEFEE Intelligent Vehicles
Symposium (IV). 2024, pp. 559-566. DO1: 10.1109/IV55156.2024.10588843.

https://doi.org/10.3390/s19020334
https://www.mdpi.com/1424-8220/19/2/334
https://www.mdpi.com/1424-8220/19/2/334
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://doi.org/10.1145/2771783.2771799
https://doi.org/10.1145/2771783.2771799
https://doi.org/10.1145/2771783.2771799
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2505.16587
https://arxiv.org/abs/2505.16587
https://arxiv.org/abs/2505.16587
https://doi.org/10.1109/IV55156.2024.10588843

Draft of October 1, 2025 (commit: 74¢5780)

Appendix

47

Draft of October 1, 2025 (commit: 74c5780)

Appendix A

Scenario file diffs

The diffs represent the difference between two files, highlighting what has changed. In
this context — the red indicates something that was changed from the original scenario,
and the green indicates something that was added by the LLM. The lines in black are
unchanged.

A.1 Cut_in-enhanced-5.py

1 --- cut_in.py 2025-10-01 12:02:38

2 +++ cut_in-enhanced-5.py 2025-10-01 12:02:50
3 @ -1,3 +1,4 0O

1 +¢““python

5 #!/usr/bin/env python

7 # Copyright (c) 2019-2020 Intel Corporation

8 @@ -23,17 +24,20 Q@

9 from srunner.scenariomanager.scenarioatomics.atomic_behaviors
import (ActorTransformSetter,

LaneChange,
WaypointFollower ,
AccelerateToCatchUp)
AccelerateToCatchUp,

KeepVelocity) # Added KeepVelocity for background traffic

15 from srunner.scenariomanager.scenarioatomics.atomic_criteria
import CollisionTest

16 from srunner.scenariomanager.scenarioatomics.
atomic_trigger_conditions import InTriggerDistanceToVehicle,
DriveDistance

17 from srunner.scenarios.basic_scenario import BasicScenario

1z +from srunner.tools.scenario_helper import
get_waypoint_in_distance # Added for spawning background
traffic

21 class CutIn(BasicScenario):

48

39

40

46

60

61

62

ee

+ o+ + o+

Draft of October 1, 2025 (commit: 74c5780)

A.1. Cut_in-enhanced-5.py

The ego vehicle is driving on a highway and another car is
cutting in just in front.

This is a single ego vehicle scenario

This is a single ego vehicle scenario, now enhanced with more

complexity due to

adverse weather, challenging time of day, and additional
background traffic.

timeout = 1200
-45,15 +49,28 @@
self . _map = CarlaDataProvider.get_map ()
self._reference_waypoint = self._map.get_waypoint (config.
trigger_points [0].location)

self._velocity = 40

self._delta_velocity = 10

self. _trigger_distance = 30

self._velocity = 40 # Default velocity for cut-in
vehicle

self . _delta_velocity = 10 # Default delta velocity for
cut-in acceleration

self. _trigger_distance = 30 # Default distance for cut-in
trigger
--- ENHANCEMENT: More detailed randomization for key
parameters ---

if randomize:
self. _velocity = random.uniform(25, 55) # Slightly
wider range for cut-in vehicle speed
self. _trigger_distance = random.uniform (15, 45) #
Slightly wider range for cut-in trigger distance
self._delta_velocity = random.uniform(8, 18) #
Randomize acceleration aggressiveness of cut-in car

self . _background_traffic_speed_variation = random.
uniform (0.8, 1.2) # For background traffic speed
else:
self._background_traffic_speed_variation = 1.0

get direction from config name
self._config = config
self. _direction = None
self. transform_visible
self. transform_visible
spawn location (above map)

None

None # This is for imitial

self .number_of_background_vehicles = 3 # --- ENHANCEMENT:
Number of additional background vehicles ---

self .background_vehicles = [] # List to store background
vehicles

super (CutIn, self).__init__("CutIn",
ego_vehicles,

49

Draft of October 1, 2025 (commit: 74c5780)

Appendix A. Scenario file diffs

63 config,
64 @@ -61,10 +78,48 Q@
65 debug_mode,

66 criteria_enable=
criteria_enable)

68 — if randomize:

69 — self. _velocity = random.randint (20, 60)

70 = self. _trigger_distance = random.randint (10, 40)
71+ # --- ENHANCEMENT: Add adverse weather and time of day
72 + self._setup_environment ()

73

74 +

75 + def _setup_environment (self):

76 + men

77+ Sets up the environment with adverse weather and

challenging time of day.
78 + This significantly decreases driveability by reducing
visibility and grip.
79 + e
Randomize weather parameters for more variations and
challenge
weather_params = carla.WeatherParameters (
cloudiness=random.uniform (70, 100),
precipitation=random.uniform (50, 90), # Rain
precipitation_deposits=random.uniform(50, 90), #

+

80

81
82

83

+ 4+ o+ +

84
Puddles
85 + wind_intensity=random.uniform (0.5, 1.5), # Stronger
wind
86 + fog_density=random.uniform (20, 50), # Moderate fog
wetness=random.uniform (50, 90), # Wet roads
sun_altitude_angle=random.uniform(-10, 10) # Dusk/
Dawn or low sun

)

self .world.set_weather (weather_params)

o0 o0
oo ~
+ o+

90

+ 4+ 4+ +

Force challenging time of day (night or very low sun
angle)
if random.random() < 0.6: # 60% chance of night
self .world.set_weather (carla.WeatherParameters (

sun_altitude_angle=-90.0,
cloudiness=random.uniform (80, 100),
precipitation=random.uniform (60, 100),
precipitation_deposits=random.uniform (60, 100),
wetness=random.uniform (70, 100),
fog_density=random.uniform (30, 60),
moon_intensity=random.uniform(0.1, 0.5) # Dim

98

99

100

]
+ o+ + o+ A+ A+ A+ A+ +

101
moonlight
))
else: # Dusk/dawn with challenging conditions
self .world.set_weather (carla.WeatherParameters (
sun_altitude_angle=random.uniform(-20, 20),
cloudiness=random.uniform (70, 100),
precipitation=random.uniform (30, 70),
precipitation_deposits=random.uniform (30, 70),

102
103
104
105
106
107

+ o+ 4+ A+ A+ 4+

108

109

110

130

131
132
133

134

136
137

138

139

140

+ o+ + o+

e

+ o+ + 4+ 4+ 4+

+

+ 4+ 4+ +

Draft of October 1, 2025 (commit: 74c5780)

A.1. Cut_in-enhanced-5.py

wetness=random.uniform (30, 70),
fog_density=random.uniform (10, 40)
))

def _initialize_actors(self, config):

direction of lane, on which other_actor is driving
before lane change
-74,69 +129,154 @O0
if °RIGHT’ in self._config.name.upper ():
self._direction = ’right’

add actors from xml file
add actors from xml file (this is the cutting-in
vehicle)
for actor in config.other_actors:
vehicle = CarlaDataProvider.request_new_actor (actor.
model, actor.transform)
self .other_actors.append(vehicle)
Initially disable physics. It will be enabled by
ActorTransformSetter when it drops.
vehicle.set_simulate_physics (enabled=False)

transform visible
transform visible: This places the cutting-in car high
above the map initially

other_actor_transform = self.other_actors[0].
get_transform ()
self. _transform_visible = carla.Transform/(

carla.Location(other_actor_transform.location.x,
other_actor_transform.location.y,
other _actor_transform.location.z +
105) ,
other_actor_transform.location.z +
105) , # Spawn high above
other_actor_transform.rotation)

--- ENHANCEMENT: Spawn background traffic to increase
complexity ---
self._spawn_background_traffic ()

def _spawn_background_traffic(self):

nnn

Spawns additional background vehicles to increase traffic
density and complexity.

These vehicles will follow simple driving behaviors.

nnn

ego_waypoint = self._map.get_waypoint (self.ego_vehicles
[0].get_location())

available_vehicle_blueprints = CarlaDataProvider.
get_filtered_traffic_actor_blueprints(
’vehicle.x’,
rolename=’background’
)

if not available_vehicle_blueprints:

51

Draft of October 1, 2025 (commit: 74c5780)

159

160

161

162

163

164

165

166

167

168

169

170

183
184

185

186
187

188

189

190

191

192

Appendix A. Scenario file diffs

+ 4+ 4+ 4+

+ 4+ 4+ 4+ A+ 4+

+ o+ o+ o+ o+

+ o+

52

return # No blueprints available, skip spawning
background traffic

spawn_points = []

Background vehicle 1: On ego’s lane, behind ego
wp_behind_ego = get_waypoint_in_distance (ego_waypoint,
random.uniform (25, 45), False)
if wp_behind_ego and wp_behind_ego.lane_id ==
ego_waypoint.lane_id:
spawn_points.append (wp_behind_ego.transform)

Background vehicle 2: On ego’s lane, ahead of ego (
further away, possibly slower)

wp_ahead_ego = get_waypoint_in_distance (ego_waypoint,
random.uniform (60, 100), False)

if wp_ahead_ego and wp_ahead_ego.lane_id == ego_waypoint.
lane_id:

spawn_points.append (wp_ahead_ego.transform)

Background vehicle 3: On an adjacent lane, adding
general highway traffic
This car will be on the lane opposite to where the cut-
in is coming from,
making the driving environment more dense and limiting
escape routes.
if self._direction == ’left’: # Cut-in from left, add
traffic on right lane
adjacent_lane_wp = ego_waypoint.get_right_lane ()
else: # Cut-in from right, add traffic on left lane
adjacent_lane_wp = ego_waypoint.get_left_lane ()

if adjacent_lane_wp:
Place it slightly behind or abreast of ego
wp_adj_lane = get_waypoint_in_distance (
adjacent_lane_wp, random.uniform(-10, 20), False)
if wp_adj_lane:
spawn_points.append (wp_adj_lane.transform)

Spawn the vehicles
for i in range(min(self.number_of_background_vehicles,
len(spawn_points))):
bp = random.choice(available_vehicle_blueprints)
transform = spawn_points[i]
Adjust Z to prevent spawning issues if ground isn’t
perfectly flat
transform.location.z += 0.5

vehicle = CarlaDataProvider.request_new_actor (bp.id,
transform)
if vehicle:
self .background_vehicles.append(vehicle)
self.other_actors.append(vehicle) # Add to
general other_actors for cleanup and criteria checks
vehicle.set_simulate_physics (enabled=True) #
Background vehicles should have physics

Draft of October 1, 2025 (commit: 74c5780)

A.1. Cut_in-enhanced-5.py

193 +

194 +

195 def _create_behavior (self):

196 e

197 Order of sequence:

198 — - car_visible: spawn car at a visible transform

199 + - car_visible: spawn cut-in car at a visible transform (
above map)

200 - just_drive: drive until in trigger distance to
ego_vehicle

201 - accelerate: accelerate to catch up distance to
ego_vehicle

202 - lane_change: change the lane

203 - endcondition: drive for a defined distance

204 +

205 + --- ENHANCEMENT: Integrate background traffic behaviors

206 nnn

207

208 — # car_visible

200 = behaviour = py_trees.composites.Sequence ("CarOn_{}_Lane"
.format (self._direction))

210 = car_visible = ActorTransformSetter (self.other_actors[0],
self. _transform_visible)

211 — behaviour.add_child(car_visible)

212 + # --- Cut-in vehicle behavior (Original logic, now
wrapped in a sequence) ---

213 + cut_in_behavior_sequence = py_trees.composites.Sequence ("
CutInBehavior")

214

215 — # just_drive

216 — just_drive = py_trees.composites.Parallel(

217 = "DrivingStraight", policy=py_trees.common.
ParallelPolicy.SUCCESS_ON_ONE)

218 + # car_visible: Teleport cut-in car high above, then let
it drop (physics enabled by setter)

219 + car_visible = ActorTransformSetter (self.other_actors[0],
self._transform_visible, physics_enabled=True)

220 + cut_in_behavior_sequence.add_child(car_visible)

221

222 = car_driving = WaypointFollower (self.other_actors[0], self
._velocity)

223 — just_drive.add_child(car_driving)

224 + # just_drive: Wait until cut-in car is close enough to
ego

225 + just_drive_parallel = py_trees.composites.Parallel(

226 + "DrivingStraightUntilTrigger", policy=py_trees.common
.ParallelPolicy.SUCCESS_ON_ONE)

227

228 = trigger_distance = InTriggerDistanceToVehicle(

229 + # The actual driving behavior for the cutting-in car

230 + cut_in_car_driving = WaypointFollower (self.other_actors
[0], self._velocity)

231 + just_drive_parallel.add_child(cut_in_car_driving)

232 +

53

Draft of October 1, 2025 (commit: 74c5780)

244

Appendix A. Scenario file diffs

54

Trigger condition: When the cut-in car is within
trigger distance to ego

trigger_distance_condition = InTriggerDistanceToVehicle(

self .other_actors[0], self.ego_vehicles[0], self.

_trigger_distance)

just_drive.add_child(trigger_distance)

behaviour.add_child (just_drive)

just_drive_parallel.add_child(trigger_distance_condition)

cut_in_behavior_sequence.add_child(just_drive_parallel)

accelerate

accelerate: Accelerate to match/catch up with ego

accelerate = AccelerateToCatchUp(self.other_actors[0],
self.ego_vehicles [0], throttle_value=1,

delta_velocity=self.

_delta_velocity, trigger_distance=5, max_distance=500)

behaviour.add _child (accelerate)

cut_in_behavior_sequence.add_child(accelerate)

lane_change
lane_change: Perform the actual cut-in
if self._direction == ’left’:
lane_change = LaneChange (
self.other_actors [0], speed=None, direction=’
right’, distance_same_lane=5, distance_other_lane=300)
behaviour.add_child(lane_change)
else:
cut_in_behavior_sequence.add_child(lane_change)
else: # self._direction == ’right’
lane_change = LaneChange(
self.other_actors[0], speed=None, direction=’left
>, distance_same_lane=5, distance_other_lane=300)
behaviour.add_child(lane_change)
cut_in_behavior_sequence.add_child(lane_change)

endcondition

endcondition: Drive for a defined distance after cut-in
endcondition = DriveDistance(self.other_actors[0], 200)
cut_in_behavior_sequence.add_child(endcondition)

build tree

root = py_trees.composites.Sequence ("Behavior", policy=
py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)

root.add_child (behaviour)

root.add_child (endcondition)

--- Background traffic behavior (Parallel to the main
cut-in logic) ---
All background vehicles will just keep driving straight

background_traffic_behavior = py_trees.composites.
Parallel (
"BackgroundTraffic", policy=py_trees.common.
ParallelPolicy.SUCCESS_ON_ALL
)

280

281

282

289

290

291
292

293
294
295
296
297
298
299
300
301

302

303
304
305
306
307
308
309
310
311
312
313

Draft of October 1, 2025 (commit: 74¢5780)

A.1. Cut_in-enhanced-5.py

Ensure we only add behavior for actually spawned
background vehicles
if self.background_vehicles:
initial_ego_speed_kph = CarlaDataProvider.
get_velocity(self.ego_vehicles[0]).length() * 3.6 # Get ego’s
initial speed in km/h
for i, b_vehicle in enumerate(self.
background_vehicles):
Calculate a slightly varied speed for each
background vehicle
Ensure a minimum reasonable speed for traffic
flow
b_speed = max(initial_ego_speed_kph * self.
_background_traffic_speed_variation, 20)
background_traffic_behavior.add_child(
KeepVelocity(b_vehicle, target_velocity=
b_speed)

--- Overall behavior tree: Cut-in behavior and
background traffic run in parallel ---

The scenario completes when the primary cut-in behavior

finishes.

root = py_trees.composites.Parallel ("OverallScenario",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)

root.add_child(cut_in_behavior_sequence)

if self.background_vehicles: # Only add if there are
background vehicles

root.add_child(background_traffic_behavior)

return root

def _create_test_criteria(self):
-145,8 +285,8 Q@

criteria = []

Collision criteria for the ego vehicle with *any* other
actor (including new background traffic)
collision_criterion = CollisionTest (self.ego_vehicles [0])

criteria.append(collision_criterion)

return criteria
-156,3 +296,4 @@

Remove all actors after deletion.
nnn

self .remove_all_actors ()

+({{
\ No newline at end of file

Listing A.1: The diff of an LLM-enhanced Cut_ in scenario, highlighting how the LLM enhanced
the scenario.

55

	I Introduction
	Motivation
	Background
	Testing
	Pre- and post-conditions
	Test coverage

	ads
	ads testing
	ads driveability
	ads testing metrics
	The complexities of ads testing
	ads simulation
	The ads simulator jungle
	Concepts of ads simulation

	llm
	llm architecture
	Emergent abilities
	Intelligence in llm
	Utilising llm - Prompt engineering
	General challenges with llm
	The different kinds of llm
	Existing llm applications for ads

	Problem description
	Cost
	Impossible to test all scenarios
	Edge cases

	Literature review
	Graz University of Technology survey on llm applications for ads
	Meta survey review
	The categories of ways of applying llm for ads testing
	The 5 key challenges when applying llm for ads testing

	II The project
	Related work
	DeepScenario
	RTCM
	DeepCollision
	AutoSceneGen
	LLM4AD
	LLM-Driven testing of ads
	Requirements All You Need?
	Language Conditioned Traffic Generation
	Scenario engineer GPT
	LLM driven scenario generation
	Chat2Scenario

	Proposed solution
	Implementation language
	The room for concurrency

	Overview of the components of the Hefe pipeline
	Test case enhancement
	Test case running and evaluation

	Implementation details
	Carla interface and scenario utilities – Thor
	LLM interface and prompt applications – Odin
	LLM interface implementations
	Prompts and their associated code

	Execution tool / user oriented frontend – Loki

	Experiment methodology
	Prompts
	Trying different llm
	Metrics

	III Conclusion
	Results
	Output of the llm
	Hallucinations in the enhanced scenarios
	Carla crashes with certain scenarios

	Metrics used for evaluation

	Discussion
	Environmental concerns
	Realism in the enhanced scenario
	LLM context size
	Python / OpenScenario / DSI

	Further work
	llm aspects
	Different promtping strategies
	Temperature
	Pretraining?
	Retrieval-augmented generation (RAG)
	More models
	Tool calling

	GUI visualisations
	Instant validation of test case syntax
	Other datasets

	Conclusion

	Appendix
	Scenario file diffs
	Cut_in-enhanced-5.py

